Differences between revisions 12 and 14 (spanning 2 versions)
Revision 12 as of 2005-08-22 23:50:46
Size: 573
Editor: yakko
Comment:
Revision 14 as of 2005-08-22 23:52:00
Size: 573
Editor: yakko
Comment:
No differences found!

A set E is compact if and only if, for every family latex2($\{G_{ \alpha } \}_{\alpha \in A}$) of open sets such that latex2($E \subset \cup_{\alpha \in A}G_{\alpha}$)

Heine-Borel Theorom: A set latex2(\usepackage{amsfonts} % $E \subset \mathbb{R}$) is compact iff E is closed and bounded.

Example [2,8] is a compact set. The unit disk including the boundary is a compact set. (3,5] is not a compact set. Note that all of these examples are of sets that are uncountably infinite.

Introduction to Analysis 5th edition by Edward D. Gaughan

CompactSet (last edited 2020-01-26 17:51:19 by 68)