
Huffman(C)
n = length of C //C linked list
Q=C //min priority queue
for i = 1 to n-1

… allocate a new node z
 left[z]=x=extractMin[Q]
 right[z]=y=extractMin[Q]
 f[z]=f[x]+f[y]

… Insert(Q,z)
return extractMin(Q) //return the
//root of the tree

i th order statistics algorithm runs in O(n). That is the selection of the ith item can be done in O(n) running time.
Dynamic programming: Prove both Optimal substructure – (if an optimal solution to the problem contains within it optimal solutions to subproblems) and overlapping
subproblems – (subproblems must be solved several time throughout solving the original problem.)
Optimal Substructure:
1. Show that the problem consists of making a choice that leaves one or more subproblems to solve.
2. Suppose that for a given problem you are given the choice that leads to the optimal solution.
3. Determine which subproblems ensue and how to best characterize the resulting space of subproblems
4. Show that the solutions to the subproblems used within the optimal solution to the problem must
themselves by optimal by cut -n-paste contradiction method.
Transforming a recursive solution into a bottom-up dynamic programming solution: Example
MCM: Matrix A i has dimensions pi-1, pi. m[i,j] is the minimum number of scalar multiplications needed to
compute the matrix A i..j. So

LCS: Let X = <x1, x2, …, xm>, we define the ith prefix of X, for i=0,…,m as Xi=<x1,…,xi>. Let Y=<y1,…yn> and Z=<z1,…,zk> be any LCS of X and Y. Then Optimal
substructure argument
1. If xm=yn, then zk = xm=yn and Zk-1 is an LCS of Xm-1 and Yn-1
2. If xm≠yn, then zk≠xm à Z is an LCS of Xm-1 and Y.
3. If xm≠yn, then zk≠yn à Z is an LCS of X and Yn-1.
Recursive solution at right.

Optimal BST: Let K=<k1,…,kn> be n distinct keys ∋ k1<…<kn. We also must have n+1 dummy keys representing all the values not in K. <d0,…,dn> ∋ d0 represents all values
less than k1, d1 represents all values between k1 and k2, and dn represents all values greater than kn. Each ki has a probability pi and each di has a probability qi. Define: w(i,j) =

∑ ∑
= −=

+
j

il

j

il
ll qp

1

 and





≤+++−

−=
=

≤≤

−

jiifjiwjrekie

ijifq
jie

jki

i

)},(],1[]1,[{min

1
],[1

Greedy Algorithm: Prove Optimal substructure, and Greedy choice property – (that any optimal solution may or must contain the greedy choice.)
1. Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
2. Prove that there is always an optimal solution to the original problem that makes the greedy choice. à Greedy choice is safe.
3. Demonstrate that, …, what is left is a subproblem with the property that if we combine an optimal solution with the greedy choice we get an optimal solution.
Fractional Knapsack,
Super increasing coin problem…
Huffman Encoding

Flow Networks: A flow network G = (V, E) is a directed graph in which each edge (u,v) ∈ E has a nonnegative capacity c(u,v)≥ 0. Each vertice v is on a path from (s)Source to
(t)Sink à the graph is connected and |E| ≥ |V| – 1. Flow is defined by f(u,v) ≤ c(u,v) with the following properties: Capacity constraint above or Σu∈Vf(u,v) = 0 for v∈V-{s,t},
Skew symmetry ∀ u, v ∈ V, f(u,v) = -f(v,u), Flow conservation ∀ u ∈ V={s,t} Σv∈Vf(u,v)=0. Value of a flow f denoted |f| = Σv∈Vf(s,v). Implicit Sum notation
f(X,Y)=Σx∈XΣy∈Yf(x,y). Lemma 26.1: ∀ X,Y,Z ⊆ V with X∩Y=0, f(X∪Y,Z)=f (X,Z)+f(Y,Z) and f(Z,X∪Y)=f(Z,X)+f(Z,Y). Residual networks are those nasty looking networks
with back flow arrows instead of used/capacity numbers on the original edges. residual networks are defined as: Gf = (V,Ef) where E f = {(u,v)∈V×V : cf(u,v)>0}. Augmenting
Paths: p is a simple path from s to t in a residual network Gf. A flow is maximum if there does not exist any more augmenting paths. Max-Flow, Min-Cut: Given all cuts – see
def. (S,T) where s∈S, t∈T, the cut with the minimum flow f(S,T) is the maximum flow. Ford-Fulkerson = O(E|f*|) where f* is the max flow.
Edmonds-Karp algorithm uses a depth first search to find the shortest path when adding augmenting paths to the residual network and it runs in O(VE2)
Classification problems: P (polynomial time solvable) NP (non-deterministic polynomial), NPC , NP-Hard
Proving NP: A language L ∈ NP means that given a certificate we can verify it in polynomial time. So: Precisely define the certificate and the verification algorithm, show that
the algorithm verifies in polynomial time and cannot be fooled.
Proving NP-Hard: Given a language L and every language L’∈NP L’≤p L and possibly L∉NP. Thus we must only prove that a known NP -hard problem or NP-complete
problem reduces to this one in polynomial time.
Proving NP-Complete: Given a language L, prove that L∈NP and prove that some known language L’∈NCP reduces to this language. NOTE: the reduction may seem totally
arbitrary! what you have to do is show that (L’(x)àyes) ⇔ (L(x)àyes) , that is find a polynomial time algorithm to transform L’ into L. Don’t worry about anything except that
⇔ condition! Not all instances of your problem will cover the NPC problem! Don’t worry about it!
LIST OF NPC Problems and sketches of the reductions:
Circuit-Sat : original problem we don’t do this one!
Sat (Boolean formula sat) : label the wires and create formulas for each gate like
 xn ∧ (x3 ⇔ x1 ∧ x2) ∧ … ∧ (x7 ⇔ x8∨ x9)
3-CNF-SAT :
Clique : A complete subgraph of G – thus a K-Clique is a complete subgraph of G with k=|V|. We reduce by creating a graph that has 3 vertice sets (same number as clauses) and
put in an edge from each vertex to each vertex in other clauses that don’t contradict it. If there is an n-clique where n is the number of clauses, it is satisfiable. Draw and convince
yourself you should be able to reproduce it.
Vertex-Cover : If there is a k-clique in G, then there is a vertex cover of size n-k in the complement of G.
Subset-Sum : Evil and we don’t have to do it!
Ham-Cycle: Evil and we don’t have to do it!
TSP(Traveling Salesperson): TSP = {<G,c,k> : G = (V,E) is a complete graph, c is a function from V×VàZ, k∈Z, and G has a traveling-salesman tour with cost at most k}. The
reduction is simple: Take an instance of ham-cycle G(V,E) and map it to a complete graph G’(V’,E’) where if (u,v)∈E, c(u,v)=0, otherwise c(u,v)=1. Is there a TSP(G’,c,0)?

GRAPH DEFINITIONS:









≠>−−
=>+−−

==
=

ji

ii

yxandjiifjicjic
yxandjiifjic

joriif
jic

0,]),1[],1,[max(
0,1]1,1[

000
],[

LCS-Length
 m=length[X]; n=length[Y];
 for i=1 to m {c[i,0]=0};
 for j=0 to n {c[0,j]=0}
 for i=1 to m
 for j=1 to n
 if x[i]=y[i] then
 c[i,j] = c[i-1, j-1]+1
 b[i,j] = “D” //diag
 else if c[i-1,j]≥c[i,j-1] then
 c[i,j]=c[i-1,j]
 b[i,j] = “U” //up





<+++
=

=
− jiifpppjkmkim

jiif
jim

jki }],1[],[min{
0

],[
1

Matrix -Chain -Order(p)
n = length[p] –1
for i=n do {m[i,i]=0}
for L=2 to n
 for i=1 to n-L+1
 j=1+L-1
 m[i,j]=inf
 for k=i to j-1
 q=m[i,k] + m[k+1,j]+p[i-1]*p[k]*p[j]
 if q<m[i,j]
 m[i,j]=q
 s[i,j]=k
return m and s

Optimal-BST(p,q,n)
for i=1 to n+1 {e[i,i-1]=q[i-1]; w[i,i-1]=q[i-1] }
for L=1 to n
 for i=1 to n-L+1
 j=i+L-1
 e[i,j]=inf
 w[i,j]=w[i,j-1]+p[j]+q[j]
 for k=1 to j
 t=e[i,k-1]+e[k+1,j]+w[i,j]
 if t<e[i,j] then
 e[i,j] = t
 root[i,j]=k
return e and root

For any graph G=(V,E) and subset V'ÍV, the following statements are
equivalent: (1) V' is a vertex cover for G. (2) V-V' is an independent
set for G. (3) V-V' is a clique in the complement of G^{c} of G where
Gc=(V,Ec) and Ec={{u,v}:u,vÎV and {u,v}? E}

Ogden’s lemma: s = uvxyz; vy contains at least one distinguished
position; wxy contains no more than n distinguished positions; x
contains at least 1 (or 2) distinguished position(s) " m = 0, uvmxymzÎL

DAG-Shortest Path(G,w,s)
1. Topologically sort the vertices of G O(V+E)
2. Initialize-Single-Source(G,s) O(V)
3. For each vertex u, taken in Topo. sorted order O(V)
4. for each vertex vÎAdj[u] O(E) agg analysis
5. Relax(u,v,w) O(1)
Running Time: O(V+E)

BFS: Given a Graph G and a starting node s
1. Color all the nodes white
2. Distance for all nodes u to be d[u]=infinity
3. Parent of each node u to be p[u]=nil
4. Color s grey
5. Enqueue sàQ
6. while Q is not empty
7. u=dequeue(Q)
8. find each white neighbor v of u do
9. d[v]=d[u]+1
10. p[v]=u
11. engueue(v)
12. color[u]=black

DFS(G)
1) for each vertex u Î V[G]
2) do color[u]=white
3) p[u]=nil
4) time=0
5) for each vertex u Î V[G]
6) do if color[u]=white
7) then DFS_Visit(u)
 DFS_Visit(u)
1) colorp[u]=gray
2) time++
3) discover[u]=time
4) for each vÎAdj[u] //explore edges
5) do if color[v]=white
6) then p[v]=u
7) DFS_Visit(v)
8) color[u]=black
9) time++
10) finish[u]=tim e

Topological Sort(G)
1. call DFS(G) to compute the finish times f[v] for each vertex v
2. as each vertex is finished, insert it on the front of a linked list
3. Return the linked list of vertices
(1) O(V+E) (2-3) O(1) = O(V+E)

Strongly-Connected-Components(G)
1) call DFS(G) to compute finishing times f[u] for each vertex u
2) compute GT
3) call DFS(GT) , but in the main loop of DFS , consider the vertices in order of

decreasing f[u] (as computed in line 1)
4) output the vertices of each tree in the depth-first forest formed in line 3 as separate

strongly connected components.

Initialize-Single-Source(G,s)
1. " vÎV(G)
2. d[v]=8
3. p[v]=NIL
4. d[s]=0 O(V) Relax(u,v,w)

 if d[v]>d[u]+w(u,v)
 d[v]=d[u]+w(u,v)

 p[v]=u
O(1)

Floyd-Warshall(w)
n=# rows in w
D(0) = w
for k = 1 to n
 for i = 1 to n
 for j= 1 to n
 dij

k = min(dij
(k-1), dik

(k-1)+ dkj
(k-1))

return D(n)
Running Time O(n3)=O(V3)

Ford-Fulkerson-Method
1initialize flow to 0
2while $p, an augmenting path
3augment flow f along p
4return f

Connected graph :An undirected graph that has a path between every pair of vertices. Strongly connected graph: A directed graph that has a path from each vertex to every other
vertex. Degree of a vertex: the number of edges connected to it. Degree of a graph: the maximum degree of any vertex Residual network : Instead of using flow/capacity flow is
denoted by an arrow in the opposite direction and capacity is reduced.

Augmenting paths: A path from s to t such that for each edge in the path c(u,v) > 0. Cuts (graphs/networks):A
nonempty, proper subset of vertices of a graph. Bipartite graph : An undirected graph where vertices can be divided
into two sets such that no edge connects vertices in the same set. Trees: Are zero based! Bijection: Given two non-
empty sets X, Y, a function f: XàY is a bijection if it is one-to-one (injective) and onto (surjective). Vertex Cover: of
an undirected graph G=(V,E) is a subset V’⊆V such that if (u,v) ∈ E, then u∈V, or v∈V’ or both. That is a vertex
cover is a set of vertices that cover the edges. Running time for BFS is O(V+E) BFS finds only those vertices that are
reachable from s . The graph created from a BFS has no cycles. DFS may result in different trees based on the order
in which adjacent verticies are visited, but this will not change the effectiveness of the results.Running Time Q(V+E).
The Predecessor subgraph forms a depth-first forest composed of several depth-first trees. A topological sort of a
DAG G=(V,E) is a linear ordering of all its vertices such that if G contains an edge (u,v), then u appears before v in
the ordering. (If the graph is not acyclic, then no linear ordering is possible.) A strongly connected component of a
directed graph G=(V,E) is a maximal set of vertices CÍV such that "u,vÎC , we have both a path from u to v and v
to u .

However MST running time can be decreased by using a Fibonacci heap where Extract-Min in O(log v) and Decrease-Key in
O(1) , thus we can reduce line 11, and get a running time of O(E+V log V). Shortest Paths: Adjacency list
representation is used for all these algorithms.
B-F Allows: negative weight edges, but not
negative cycles on the shortest path.

 The running

time for
Dijkstra’s
algorithm
is quite
complex
because it depends on how the Min-Queue Q is implemented. if we use an
array and take advantage of the numbered list of vertices we have à
Thus the running time is O(V2+E)=O(V2). This can be reduced to

O(VlogV+E) by using a Fibonacci heap from chapter 20.
All-Pairs Shortest Paths: Given a weight matrix w and a L (i) matrix where () ()[]





≠∞
=

==
ji
ji

lL ij if
 if000 Notice that the

recursive formula () ()()kj
m

ik
m

ij wll += −1min requires the pre-caclulation of ()1−mL and we have three indices that go from

1 to n leading us to believe that the running tim e will be O(n4). Obviously L (0) contains the shortest path from every
vertex to itself if there are no negative weight cycles. We extend this using the following algorithm:

After running Extend-Shortest-Paths i times, we find the shortest
path between vertices of length i . To make sure that we find all shortest
paths we must run this |v|-1 times. Thus the overall running time
is going to be O(V2) . We can improve this by the following

observation: This algorithm is an operation (call it ∘) on matrices that is associative. We have
Floyd-Warshall Algorithm for All Pairs Shortest Paths His recurssive characterization is
ingenious:where dij

(k) is the shortest path from i to j where the intermediate vertices come from
the set {1,…,k) . Again this algorithm requires us to calculate dij

(k-1) before we calculate dij
(k), but

here we are calculating only three indices in a manner that does not require repetitions we expect the running

time to be O(n3) . Note: w is the adjacency matrix! Note: Dropping the superscripts allows us to diminish the space requirement
from Q(n3)àQ(n2) without disrupting the algorithm. To construct the actual shortest

paths, we can use the p’s below.

Extend-Shortest-Paths (L,w)
n = # of rows in L O(1)
int L’[n][n] is an n x n matrix O(1)
for i=1 to n O(n)
for j=1 to n O(n)
 lij

’ = 8 O(1)
for k=1 to n O(n)
 lij

’=min(lij
’,lik+wkj) O(1)

return L’ O(1)
Total Running Time O(n3)=O(V3)

()
() () () ()

() () () ()





+>
+≤

= −−−−

−−−−

1111

1111

 if
 if

k
kj

k
ik

k
ij

k
kj

k
kj

k
ik

k
ij

k
ijk

ij ddd
ddd

π
π

π

()
()
()

()
()

() () ()
() ()

(){ } ()
()

()
() () ()

() () ()VEOEEOEEEVO

VEEOVOV

OA
vuvuUnion

vuvuAA
vFindSetuFindSet

VEVOEvu
EEOE

vSetMake
VOVv

OAA
wG

loglogic above theusingor logloglogget

 weSo Cp511.on definedfunction growingslowly a is
) (because loglog where

1return 9.
... and sets he //Union t, 8.

...MSTin edge safe , //include,Then 7.

... if do 6.

by weightorder ingnondecreasin taken ,, edgeeach for 5.
logby weightorder ingnondecreas into of edges sort the 4.

 do 3.
x each vertefor 2.

1MST thedefine that edges ofset theis //? 1.
,Kruskal-MST

2

=+

<==

∪=
≠

+∈

−
∈

=

α

α

 :Time Running

() () ()
()
()

()
()
()

()
()

()
()

() ()
()VEOeRunningTim

VOvuwvkey
Ouvp
OvkeyvuwQv

EOEuAdjv
VOQMinExtractu

VOQ
OQV
Orkey

ONilup
Oukey

VO
Vu

startweightgraphrEewEVGimsMST

log
logoperationkey e //decreas,][.11
1][.10
1][),(and if.9

 times2][each for .8
log)(.7

?! While.6
1queuepriority min //a into Insert .5
1key e //decreas0][.4

1][.3
1][.2

each for .1
,,//),,,(P r

=
=

=
<∈

=∈
−=

=

=
=

∞=
∈

∈−

()
() ()

()
() ()

() ()
() ()

[] [] () ()
()

()
()VEO

O
O

Ovuwudvd
EOEvu

Owvu
EOEvu

VOV
VOsG

swG

Time Running
1

1
1,

,
1,,

,3.
1

,
,,Ford-Bellman

true return 8.
 false return 7.
 if 6.

 edge each for 5.
 Relax 4.
 edge each for

 to 1i for 2.
Source-Single-Initialize 1.

+>
∈

∈
−=

()
() ()

()
()
()

() ()
{ }

[] ()
() ()1,,

Min-Extract
?
 from Build

1?
,

,,Dijkstra

Owvu
EOuAdjv

uSS

VOQu
VOQ
VOVQ

OS
VOsG

swG

 Relax 8.
 vertex each for 7.

 6.

 5.
 While 4.

 3.
 2.

Source-Single-Initialze 1.

∈
∪=

=
≠

=

()
() ()
() ()VOuMinExtract

OuKeyDecrease
OuInsert

=−
=−
=

1
1)(

()

() ()

() ()

...

,

323

212

1

wwLL

wwLL

wL

==

==

=

o
o

()
() () ()()




≥+
=

= −−− 1 if,min
0 if

111 kddd
kw

d k
kj

k
ik

k
ij

ijk
ij

()





∞<≠

∞==
=

ij

ij
ij wjii

wjiNIL

 and if

or if
0π

