i'" order statigtics algorithm runsin O(n). That isthe selection of thei™ item can be done in O(n) running time.

Dynamic programming: Prove both Optimal substructure— (if an optimal solution to the problem contains within it optimal solutions to subproblems) and overlapping
subproblems— (subproblems must be solved severa time throughout solving the original problem.)

Optimal Substructure: i
1. Show that the problem consists of making a choice that |eaves one or more subproblemsto solve. i, j1=1i
2. Supposethat for agiven problem you are given the choice that |eads to the optimal solution. T
3. Determine which subproblems ensue and how to best characterize the resulting space of subproblems

4. Show that the solutions to the subproblems used within the optimal solution to the problem must i 0 if i =0or =0
themselves by optimal by cut -n-paste contradiction method. P2t Poa T —
Transforming arecursive solution into a bottom-up dynamic programming solution: Example oi. il - C[I_ _:L -1 _+1 ) ff _" J > Oand x; =
MCM: Matrix A; has dimensions p.1, p. m{i,j] isthe minimum number of scalar multiplications needed to Imex(dfi, j-1,cfi-1,j]) if i,j>0andx *y,
computethematrix A ;. So

0 ifi=j
min{n{i, K] +mk+1, j1+ p_,p P} if i<

LCS: Let X =<x1, X2, ..., xm>, we define the ith prefix of X, for i=0,...,m as Xi=<x1,...,xi>. Let Y=<y1,...yn> and Z=<z1,...,zk> beany LCS of X and Y. Then Optimal
substructure argument
1. If xm=yn, then zk = xm=yn and Zk-1 isan LCS of Xm-1 and Yn-1

2. If xmtyn, then zk1xm = Z isan LCS of Xm-1and Y. Ogden’slemma: s =uvxyz; vy contains at least one distinguished CIRCUIT-SAT
3. 1f xmiyn, then zklyn = Z isan LCS of X and Yn-1. position; wxycontains no more than n distinguished positions; x
Recursive solution at right. containsat least 1 (or 2) distinguished position(s) '* m =0, w™xy"zIL
Meatrix - Chan-Order(p) LCs-Length Optimal-BST(p,q,n)
n = length[p] -1 m=length[X]; n=length[Y]; fori=1ton+1{€i,i-1]=q[i-1]; w[i,i-1]=q[i-1] } AT
for i=n do {m[i,i]=0} fori=1tom{c[i,0]=0}; forL=1ton
forL=2ton for j=0to n{c[0,j]=0} fori=1ton-L+1
fori=1ton-L+1 fori=1tom j=i+L-1 CLIGUE
j=1+L-1 forj=1ton €i,j]=inf
m[i j]=inf if x[i]=y[i] then w(i j]=w[i j-1]+p[j]+q[i]
fork=itoj-1 c[i,j] = ci-1, j-1]+1 fork=1toj Vertex-Cover
g=m(i K] + m[k+1,j]+p(i-1]* p[K]* p[i] bfi,j] ="D" //diag t=efi K-1] +efk+1,j]+wli j]
if g<m[i j] eseif c[i-1,j]3c[i,j-1] then if t<efi j] then
mi j]=q cfi j]=c[i-1] eij] =t
i j]=k bli,j] =“U" /lup rootfi j]=k
return mand < return e and root

Optimal BST: Let K=<k1,...,kn>bendistinct keys * k1<...<kn.We aso must have n+1 dummy keys representing all the values not in K. <d0,...,dn>" dO representsall values
lessthan k1, d1 represents all values between k1 and k2, and dn represents al values greater than kn. Each ki has a probability pi and each di has a probability qi. Define: w(i,j) =

Anrda ™ dii=] o i
apras T iminge {di k- Delr +1 1+ wi, )} fiE]
Greedy Algorithm: ProveOptimal substructure and Greedy choice property — (that any optimal solution may or must contain the greedy choice.)

1. Cast the optimization problem as one in which we make a choice and are | eft with one subproblem to solve.
2. Provethat thereis aways an optimal solution to the origina problem that makes the greedy choice. > Greedy choice is safe.

3. Demonstrate that, ..., what is|eft is asybproblem with the property that if we comhine an optimal solution with the greedy choice we get an optimal solution.
Fractional Knapsack, Huffman(C) ... dlocate anew node z ... Insert(Q2)
Super increasing coin problem.... n = length of C//C linked list |eft[z]=x=extractMin[Q] return extractMin(Q) //return the
Huffman Encoding Q=C //min priority queue right[z]=y=extractMin[Q] //root of thetree
fori=1tonl flZ]=f[x]+f[y]
Flow Networks: A flow network G = (V, Eyisatdirectedgraptrimwhichreach edgetuv) £ hasamonnegative capatity oftv)?-O-Fachvertice visorrarpath from (s)Sour ce to

(H)Sink > thegraphis connected and |E| 3 V|- 1. Flow is defined by f(u,v) £ c(u,v) with the following properties: Capacity constraintabove or Syivf(u,v) =0for vi V-{sf},
Skew symmetry" u,v1 V,f(uv) =-f(v,u), Flow conservation " ul V={st} Sii vf(u,v)=0.Valueof aflow f denoted [f| = Sy vf(s,v). Implicit Sum notation

f(X,Y)=S0 xSy vf(x,y). Lemma26.1:" X,Y,Zi V with XCY=0, f(XE Y, 2)=f (X,2)+(Y,Z) and f(Z, XE Y)=f(Z,X)+(Z,Y). Residual networks are those nasty looking networks
with back flow arrows instead of used/capacity numbers on the original edges. residual networks are defined as: G = (V,Er) where Er = {(uv)T V"V : &(u,v)>0}. Augmenting
Paths: pisasimple path from stotin aresidua network G. A flow is maximum if there does not exist any more augmenting paths. Max-Flow, Min-Cut: Given al cuts —see
def. (S,T) where$ S, tI T, the cut with the minimum flow f(S,T) isthe maximum flow. Ford-Fulkerson = O(E|f*|) where f* isthe max flow.

Edmonds-Karp agorithm uses adepth first search to find the shortest path when adding augmenting paths to the residual network and it runsin O(VE?)

Classfication problems: P (polynomial time olvable) NP (nondeterministic polynomial), NPC, NP-Hard

Proving NP: A language L T NP meansthat given a certificate we can verify it in polynomial time. So: Precisely define the certificate and the verification algorithm, show that
thealgorithm verifiesin polynomial time and cannot be fooled.

Proving NP-Hard: Given alanguage L and every language L'T NP L’ £, L and possibly LI NP. Thuswe must only prove that aknown NP-hard problem or NP-complete
problem reducesto thisonein polynomial time.

Proving NP-Complete: Given alanguage L, provethat LT NP and prove that some known language L' T NCP reduces to this language. NOTE: the reduction may seem totally
arbitrary! what you have to do is show that (L’ (x)>yes) U (L(x)>yes) , that isfind apolynomial time agorithm to transform L’ into L. Don’t worry about anything except that
U condition! Not all instances of your problem will cover the NPC problem! Don’t worry about it!
LIST OF NPC Problemsand sketches of the reductions:

For any graph G=(V,E) and subset V' 1V, the following statements are

Circuit-Sat : origina problem we don’t do this one! equivalent: (1) V' @aveﬁex cover for G. (2) V-V is an independent

Sat (Boolean forgmul apsat) : label the wires and create formulas for each gate like setfor G. (3) V'\c/ IS acllque’lp the complement of G'{c} of G where
xnU(x30 x1Ux2) U... U(x7 U x8Ux9) G'=(V,E) and E°={{uv}:uvTV and {u,v}? E}

3-CNRSAT :

Clique : A complete subgraph of G —thusaK -Clique is acomplete subgraph of G with k=|V|. We reduce by creating a graph that has 3 vertice sets (same number as clauses) and

put in an edge from each vertex to each vertex in other clausesthat don't contradict it. If there is an n-clique where n is the number of clauses, it is satisfiable. Draw and convince

yourself you should be able to reproduce it.

Vertex-Cover : If thereisak-cliquein G, then thereis avertex cover of size n-k in the complement of G.

Subset-Sum : Evil and we don’t have to doit!

Ham-Cycle: Evil and we don't haveto doit!

TSP(Traveling Salesperson): TSP = {<G,c k> : G = (V,E) isacomplete graph, cisafunction from V' V->Z, ki Z, and G has atraveling-salesman tour with cost at most k}. The

reduction is simple: Take an instance of ham-cycle G(V,E) and map it to a complete graph G' (V' ,E’) where if (uv)l E, c(u,v)=0, otherwise c(u,v)=1. Istherea TSP(G' ,¢,0)?

GRAPH DEFINITIONS:



Connected graph :An undirected graph that has apath between every pair of vertices. Strongly connected graph: A directed graphthat hasa path from each vertex to every other
vertex. Degree of avertex: the number of edges connected to it. Degree of agraph: the maximum degree of any vertex Residual network : Instead of using flow/capacity flow is

denacted by an arrow in the opposite direction and capacity is reduced.

Augmenting paths: A path from stot such that for each edgein the path c(u,v) > 0. Cuts (graphs/networks):A

1) cdl DFS(T) to computefinishing times flu] for each vertexu

BFS: Given aGraph G and a starting node < nonempty, proper subset of verticesof a graph. Bipartitegraph : An undirected graph wherevertices can be divided
1.  Color al the nodes white into two sets such that no edge connects verticesin the same set. Trees: Are zero based! Bijection: Given two non-

2. Distancefor al nodesu tobe d[u]=infinity empty sets X, Y, afunction f: X->Y isabijection if it is oneto-one (injective) and onto (surjective). Vertex Cover: of
3. Parent of each nodeu to be p[u]=nil an undirected graph G=(V,E) isasubset V' | V suchthat if (u,v)1 E, thenu V,orvl V' or both. That is avertex

4. Color sgrey cover isaset of verticesthat cover the edges. Runningtimefor BFSis O(V+E) BFS finds only those vertices that are
5.  Enqueue s>Q reachable from E . The graph created from a BFS has no cycles. DFS may result in different trees based on the order
6. while Qisnot empty inwhich adjacent verticies are visited, but thiswill not change the effectiveness of the results.Running Time Q(V+E).
7.  u=dequeue(Q) The Predecessor subgraph forms a depth-fir st for est composed of several depth-first trees. A topological sort of a

8.  find each white neighbor v of u do DAG G=(V,E) isalinear ordering of al itsverticessuch that if G contains an edge (u,v), then u appears beforev in
9. dv]=du]+1 the ordering. (If the graph is not acyclic, then no linear ordering is possible.) A strongly connected component of a

10. p[v]=u directed graph G=(V,E) isamaximal set of vertices CI'V such that "'u,vIC , we have both a path fromutov andv
11.  engueue(v) tou.

12, color[u]=black Srongly-Connected-Components(G)

Topologica Sort(G) 2) computeG
1. cal DFS(G) to compute thefinish times f[v] for each vertex v 3) cadl DFS(G"), butinthemainloop of DFS, consider the verticesin order of
2. aseachvertexisfinished, insert it on the front of alinked list decreasing f[u] (ascomputedinline 1)
3. Returnthelinked list of vertices 4)  output the vertices of each treein the depth-first forest formed in line 3 as separate
(1) O(V+E) (2-3) O(1) = O(V+E) strongly connected components.
DFS(G) MST -Kruskal(G,w) MST - PrirTs(G(V, E)wWel E)r)//graphweightstart olv)
1) for eachvertex u T V[G] 1.A=? [/ Aisthe set of edgesthat definethe MST o)) 1for eachu _| \Y
2) do color[u]=white 2. foreach vertex vi V ofv) 2. keylu] = o)
3) p[u]=nil 3. doMake- Set{v) 3 plul= o)
4)  time=0 4. sort the edgesof E into nondecreasng order by weight O(ElogE)  4ke&ylr]= _0 //decreaxf:key. _ of)
5) for each vertex u T V[G] 5.for eachedge(u,v)i E,taken in nondecreasng order by weight ofv+E)a(v) S "59th\/ intoQ//amin priorityjueue o(y)
6) doif color[u]=white 6. doif FindSet(u) FindSet(v) 6WhileQ="? ofv)
7)  then DFS Visit(u) 7. Then A= AE{(u,v}}/iindude (u,v)safeedgein MST 7. u=Extract MinQ) oflogv)
DFS Visit(u) 8. Union(u,v)//Union t he sets u andv 8. foreachvi Adju] 2Etimes= O(E)
1) colorp[u]=gray 9.return A o)) 9. ifvl Qandwu,y) <keyv] o)
2) timet+ Running Time : wherea (V) = O(log)v[) = Oflog|E|) (because E <V ?) 10. plv] =u oQ)
3)  discover[u]=time isa slowly growing function defined on Cp511. So we 11. key[v] = w(u,v) //decreagkeyoperation oflogv)
4) foreach VIAdj[u] //exploreedges | getO(VIogE + Elog E)=O(Elog E) or using the abovelogic O(ElogV)  RunningTiew O(ElogV)
5)  doif colorfv]=white However MST running time can be decreased by using a Fibonacci heap where Extract-Minin O(log v) and Decrease-Key in
6)  then plv]=u 0(1) , thus we can reduce line 11, and get a running time of O(E+V log V). Shortest Paths: Adjacency list
7 DFS Visit(v) Initialize-Single-Source(G,s) representation is used for al these algorithms. Bellman - Ford (G,w,s)
8)  colorfu]=black 1. " vIV(G) B-F Allows: negative weight edges, but not 1. Initialize -Single -Source (G,s) O)
?2)) }'I mg:[t]ztime 2. dv=8 negative cycles on the shortest path. 2. for i=1to V|1 A o(v)
3. p[v]=NIL Therunning —— ) 3 for each e?ge (I)J,V)l E OéE))
4 dls|=0 oV ax(u,v,w, 4. Relax (u,v,w o(l,
DA G-Shortest Path(G,w,s) & ™ timefor if d[v]>d[u]+w(u,v) 5. for each edge (uv)i E o(E)
1. Topologically sort the vertices of G O(V+E) Dijkstra's divl=dlu]+w(uyv) | & it d[v]>d[u]+ Wuv) o
2. Initidize Single-Source(G,s) oV) algorithm p[v]=u 7 return false o(1)
3. For each vertex u, taken in Topo. sorted order | O(V) is quite o) 8. return true of)
7. for each vertex v TAG)[U] O(E) agg analyss || complex _ Running. Time _ o(ve)
5. Reax(U,v,W) o(T) because it depends on how the Min-Queue Q isimplemented. if we use an Insert) =0{)
Running Time. O(V+E) array and take advantage of the numbered list of verticeswe have>
Thus therunning timeis O(V2+E)=O(V?). Thiscan bereducedto ~ DecreaseKeyu) =0(1)
O(VIogV+E) by using a Fibonacci heap from chapter 20. DijkstrfG, w,) Extract Mir{u) =0[v)
All-Pairs Shortest Paths: Given aweight marix wanda L® matrix where 0 2 j0 ifi=j Noticethat the o _
1 ] Iy ifit] 1. Initialze-Single-SourcdG,s) QV)
! 2. S=? 1
recursiveformula (m = mln(l ) 4w, ) requiresthe pre-caclulation of L{™?) and we have threeindices that go from 3. Buildofromy 8((\3)

1 to n leading usto believe that the running tim e will be O(rt"). Obvioudy L@ containsthe shortest path from every 4. While Qt? av)
vertex to itself if there are no negative weight cycles. We extend this using the following algorithm: _ 5 U=ExtractMi r{Q) O(V)
Extend-Shortest-Paths (L ,w) After running Extend-Shortest-Paths i times, we find the shortest -
n= #of rowsin L o) path between vertices of length i. To make surethat wefind all 6. s=sE{u} shortest
int L’[n][n] isan nxn matrix O(1) paths we must run ghis [VF1 times. Thustheoverdl runningtime 7. for each vertex vi Adlul O(E)
fori=1ton o(n isgoing to be O(V*) . We canimprove this by the followin
for j=1ton O((r)1) o V) P Y ’ 8- Relax(u,v,v@ O(J)
flgr_kil ton 8&; observation: Thisalgorithm isan operation (call it © ) on matricesthat isassociative. Wehave L&) = W,

I =min(l; Jichnig) o) FloydWarshall Algorlthm for All Pairs Shortest Paths His recurssive characterization is L@ = 1@ ow=w?
h e]t oL i j o ingeniouswhere d;* isthe shortest path from i toj wherethe w@r(tgrmedl ate vertices come( l1‘)r0m @) @) .
Total Running Time o(n)=0(V%) theset {1,...,k) . Again this algorithm requires usto caculate d;*™ before we caculate d;™, but LY = Low=w

here we are calculating only three indicesin amanner that does not require repetitions we @(pect the running
Floyd-Warshall(w) timeto be O(n®) . Note: w is the adjacency matrix! Note: Dropping the superscripts allows us to diminish the space requirement
n=# rowsinw from Q(n®)>Q(n? without disrupting the algorithm. To construct the actual shortest
D@ =w paths, we can usethe p’'sbelow. W, if k=0
fork=1ton g9 =i
T Ford-Fulkerson-Methoc i Am”,(qk 1) Ak J)+q<k :I)) if k3 1
f?gr' J-llt(t)onn linitidizeflow to 0 1 ) o el I
1 1 1 2while $p, an augmenting path 3 q( C{( N L
raurﬂJD(n)mln(d k1) dkk )+ d<(k )) 2agtgme;]t flow f dongp p(k) I,I: If q k l) £ kk 1) + 1) p _ % NIL |f | = J or \/\/IJ :¥
i i ; g
Running Time O(n%)=0(V?) i |urn . T if q >q +dk ! il if it jandw; <¥




