Differences between revisions 5 and 6
Revision 5 as of 2005-03-23 23:43:28
Size: 774
Editor: yakko
Comment:
Revision 6 as of 2005-03-24 00:06:05
Size: 2232
Editor: yakko
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
= Dynamic Max Count = \documentclass{article}[11pt]
\usepackage[onehalfspacing]{setspace}
\usepackage{times}
\usepackage{amsmath}
\usepackage{psfrag}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{geometry}
Line 3: Line 10:
This contains the ideas and notes for a Dynamic Max Count (Dynamic Max-in-time) agregate operator \newtheorem{corollary1}{Corollary}
\newtheorem{definition1}{Definition}
\newtheorem{example1}{Example}
\newtheorem{lemma1}{Lemma}
\newtheorem{remark1}{Remark}
\newtheorem{theorem1}{Theorem}
\newtheorem{algorithm1}{Algorithm}
Line 5: Line 18:
== Concept == \newenvironment{corollary}{\begin{corollary1} \rm}{\end{corollary1}}
\newenvironment{definition}{\begin{definition1} \rm}{\end{definition1}}
\newenvironment{example}{\begin{example1} \rm}{\end{example1}}
\newenvironment{lemma}{\begin{lemma1} \rm}{\end{lemma1}}
\newenvironment{remark}{\begin{remark1} \rm}{\end{remark1}}
\newenvironment{theorem}{\begin{theorem1} \rm}{\end{theorem1}}
\newenvironment{algorithm}{\begin{algorithm1} \rm}{\end{algorithm1}}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=1in,right=1in,top=1in,bottom=1in}
Line 7: Line 28:
Instead of using Hyper-buckets that have descrete boundaries and densities which can not be updated resonably using the MaxCountProgramNotes ideas, we propose a probabalistic method where by we put probability densities in space. Each probability density will need the following properties: \begin{document}
Line 9: Line 30:
   1. Parameters that define the distribution e.g.
      1. Center location
      1. Spatial size
      1. Standard deviation
      1. A measure of symetry or skew
   1. A multi-dimensional probability function preferably a function that specific types functions as parameters e.g. $p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$
\section{Dynamic Max Count}

This contains the ideas and notes for a Dynamic Max Count (Dynamic
Max-in-time) aggregate operator

\subsection{Concept}

Instead of using Hyper-buckets that have discrete boundaries and
densities which can not be updated reasonably using the
MaxCountProgramNotes ideas, we propose a probabilistic method where
by we put probability densities in space. Each probability density
will need the following properties:

Unknown environment 'enumerate'
    \item A multi-dimensional probability function preferably a function that uses
    types functions as parameters e.g. $p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$
    \item A theory to update ({\em delete} or {\em insert} points) the distributions
    based on changes to points.
\end{enumerate}

Based on this last item, we must maintain a database of
4-dimensional points that we index using 4-dimensional, probability
buckets.



\end{document}

\documentclass{article}[11pt] \usepackage[onehalfspacing]{setspace} \usepackage{times} \usepackage{amsmath} \usepackage{psfrag} \usepackage{graphicx} \usepackage{epsfig} \usepackage{geometry}

\newtheorem{corollary1}{Corollary} \newtheorem{definition1}{Definition} \newtheorem{example1}{Example} \newtheorem{lemma1}{Lemma} \newtheorem{remark1}{Remark} \newtheorem{theorem1}{Theorem} \newtheorem{algorithm1}{Algorithm}

\newenvironment{corollary}{\begin{corollary1} \rm}{\end{corollary1}} \newenvironment{definition}{\begin{definition1} \rm}{\end{definition1}} \newenvironment{example}{\begin{example1} \rm}{\end{example1}} \newenvironment{lemma}{\begin{lemma1} \rm}{\end{lemma1}} \newenvironment{remark}{\begin{remark1} \rm}{\end{remark1}} \newenvironment{theorem}{\begin{theorem1} \rm}{\end{theorem1}} \newenvironment{algorithm}{\begin{algorithm1} \rm}{\end{algorithm1}} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \geometry{left=1in,right=1in,top=1in,bottom=1in}

\begin{document}

\section{Dynamic Max Count}

This contains the ideas and notes for a Dynamic Max Count (Dynamic Max-in-time) aggregate operator

\subsection{Concept}

Instead of using Hyper-buckets that have discrete boundaries and densities which can not be updated reasonably using the MaxCountProgramNotes ideas, we propose a probabilistic method where by we put probability densities in space. Each probability density will need the following properties:

\begin{enumerate}

  • \item Parameters that define the distribution e.g. \begin{enumerate}
    • \item Center location \item Spatial size \item Standard deviation \item A measure of symmetry or skew
    \end{enumerate} \item A multi-dimensional probability function preferably a function that uses types functions as parameters e.g. $p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$ \item A theory to update ({\em delete} or {\em insert} points) the distributions based on changes to points.

\end{enumerate}

Based on this last item, we must maintain a database of 4-dimensional points that we index using 4-dimensional, probability buckets.

\end{document}

DynamicMaxCount (last edited 2020-01-23 22:27:01 by 68)