Size: 2232
Comment:
|
Size: 1039
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
\documentclass{article}[11pt] \usepackage[onehalfspacing]{setspace} \usepackage{times} \usepackage{amsmath} \usepackage{psfrag} \usepackage{graphicx} \usepackage{epsfig} \usepackage{geometry} \newtheorem{corollary1}{Corollary} \newtheorem{definition1}{Definition} \newtheorem{example1}{Example} \newtheorem{lemma1}{Lemma} \newtheorem{remark1}{Remark} \newtheorem{theorem1}{Theorem} \newtheorem{algorithm1}{Algorithm} \newenvironment{corollary}{\begin{corollary1} \rm}{\end{corollary1}} \newenvironment{definition}{\begin{definition1} \rm}{\end{definition1}} \newenvironment{example}{\begin{example1} \rm}{\end{example1}} \newenvironment{lemma}{\begin{lemma1} \rm}{\end{lemma1}} \newenvironment{remark}{\begin{remark1} \rm}{\end{remark1}} \newenvironment{theorem}{\begin{theorem1} \rm}{\end{theorem1}} \newenvironment{algorithm}{\begin{algorithm1} \rm}{\end{algorithm1}} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \geometry{left=1in,right=1in,top=1in,bottom=1in} \begin{document} \section{Dynamic Max Count} |
= Dynamic Max Coun = |
Line 35: | Line 6: |
\subsection{Concept} | == Concept == |
Line 43: | Line 14: |
\item A multi-dimensional probability function preferably a function that uses types functions as parameters e.g. $p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$ \item A theory to update ({\em delete} or {\em insert} points) the distributions based on changes to points. \end{enumerate} |
1. Parameters that define the distribution e.g. 1. Center location 1. Spatial size 1. Standard deviation 1. A measure of symmetry or skew 1. A multi-dimensional probability function preferably a function that uses types functions as parameters e.g. \[$p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$\] 1. A theory to ''update'', ''delete'' or ''insert'' points and the distributions based on changes to points. |
Line 60: | Line 26: |
\end{document} |
Dynamic Max Coun
This contains the ideas and notes for a Dynamic Max Count (Dynamic Max-in-time) aggregate operator
Concept
Instead of using Hyper-buckets that have discrete boundaries and densities which can not be updated reasonably using the MaxCountProgramNotes ideas, we propose a probabilistic method where by we put probability densities in space. Each probability density will need the following properties:
- Parameters that define the distribution e.g.
- Center location
- Spatial size
- Standard deviation
- A measure of symmetry or skew
- A multi-dimensional probability function preferably a function that uses
- types functions as parameters e.g. \[$p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$\]
A theory to update, delete or insert points and the distributions based on changes to points.
Based on this last item, we must maintain a database of 4-dimensional points that we index using 4-dimensional, probability buckets.