Differences between revisions 7 and 8
Revision 7 as of 2005-03-24 00:06:24
Size: 2232
Editor: yakko
Comment:
Revision 8 as of 2005-08-03 14:20:04
Size: 1039
Editor: yakko
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
\documentclass{article}[11pt]
\usepackage[onehalfspacing]{setspace}
\usepackage{times}
\usepackage{amsmath}
\usepackage{psfrag}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{geometry}

\newtheorem{corollary1}{Corollary}
\newtheorem{definition1}{Definition}
\newtheorem{example1}{Example}
\newtheorem{lemma1}{Lemma}
\newtheorem{remark1}{Remark}
\newtheorem{theorem1}{Theorem}
\newtheorem{algorithm1}{Algorithm}

\newenvironment{corollary}{\begin{corollary1} \rm}{\end{corollary1}}
\newenvironment{definition}{\begin{definition1} \rm}{\end{definition1}}
\newenvironment{example}{\begin{example1} \rm}{\end{example1}}
\newenvironment{lemma}{\begin{lemma1} \rm}{\end{lemma1}}
\newenvironment{remark}{\begin{remark1} \rm}{\end{remark1}}
\newenvironment{theorem}{\begin{theorem1} \rm}{\end{theorem1}}
\newenvironment{algorithm}{\begin{algorithm1} \rm}{\end{algorithm1}}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=1in,right=1in,top=1in,bottom=1in}

\begin{document}

\section{Dynamic Max Count}
= Dynamic Max Coun =
Line 35: Line 6:
\subsection{Concept} == Concept ==
Line 43: Line 14:
Unknown environment 'enumerate'
    \item A multi-dimensional probability function preferably a function that uses
    types functions as parameters e.g. $p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$
    \item A theory to update ({\em delete} or {\em insert} points) the distributions
    based on changes to points.
\end{enumerate}
   1. Parameters that define the distribution e.g.
      1. Center location
      1. Spatial size
      1. Standard deviation
      1. A measure of symmetry or skew
   1. A multi-dimensional probability function preferably a function that uses
      types functions as parameters e.g. \[$p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$\]
   1. A theory to ''update'', ''delete'' or ''insert'' points and the distributions based on changes to points.
Line 60: Line 26:



\end{document}

Dynamic Max Coun

This contains the ideas and notes for a Dynamic Max Count (Dynamic Max-in-time) aggregate operator

Concept

Instead of using Hyper-buckets that have discrete boundaries and densities which can not be updated reasonably using the MaxCountProgramNotes ideas, we propose a probabilistic method where by we put probability densities in space. Each probability density will need the following properties:

  1. Parameters that define the distribution e.g.
    1. Center location
    2. Spatial size
    3. Standard deviation
    4. A measure of symmetry or skew
  2. A multi-dimensional probability function preferably a function that uses
    • types functions as parameters e.g. \[$p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$\]
  3. A theory to update, delete or insert points and the distributions based on changes to points.

Based on this last item, we must maintain a database of 4-dimensional points that we index using 4-dimensional, probability buckets.

DynamicMaxCount (last edited 2020-01-23 22:27:01 by 68)