Size: 2232
Comment:
|
Size: 1042
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
\documentclass{article}[11pt] \usepackage[onehalfspacing]{setspace} \usepackage{times} \usepackage{amsmath} \usepackage{psfrag} \usepackage{graphicx} \usepackage{epsfig} \usepackage{geometry} \newtheorem{corollary1}{Corollary} \newtheorem{definition1}{Definition} \newtheorem{example1}{Example} \newtheorem{lemma1}{Lemma} \newtheorem{remark1}{Remark} \newtheorem{theorem1}{Theorem} \newtheorem{algorithm1}{Algorithm} \newenvironment{corollary}{\begin{corollary1} \rm}{\end{corollary1}} \newenvironment{definition}{\begin{definition1} \rm}{\end{definition1}} \newenvironment{example}{\begin{example1} \rm}{\end{example1}} \newenvironment{lemma}{\begin{lemma1} \rm}{\end{lemma1}} \newenvironment{remark}{\begin{remark1} \rm}{\end{remark1}} \newenvironment{theorem}{\begin{theorem1} \rm}{\end{theorem1}} \newenvironment{algorithm}{\begin{algorithm1} \rm}{\end{algorithm1}} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \geometry{left=1in,right=1in,top=1in,bottom=1in} \begin{document} \section{Dynamic Max Count} |
= Dynamic Max Coun = |
Line 35: | Line 6: |
\subsection{Concept} | == Concept == |
Line 43: | Line 14: |
\item A multi-dimensional probability function preferably a function that uses types functions as parameters e.g. $p(x_u(t),x_l(t),y_u(t),y_l(t)[,z_u(t),z_l(t)])$ \item A theory to update ({\em delete} or {\em insert} points) the distributions based on changes to points. \end{enumerate} |
1. Parameters that define the distribution e.g. 1. Center location 1. Spatial size 1. Standard deviation 1. A measure of symmetry or skew 1. A multi-dimensional probability function preferably a function that uses types functions as parameters e.g. [[latex2( 1. A theory to ''update'', ''delete'' or ''insert'' points and the distributions based on changes to points. |
Line 60: | Line 25: |
\end{document} |
Dynamic Max Coun
This contains the ideas and notes for a Dynamic Max Count (Dynamic Max-in-time) aggregate operator
Concept
Instead of using Hyper-buckets that have discrete boundaries and densities which can not be updated reasonably using the MaxCountProgramNotes ideas, we propose a probabilistic method where by we put probability densities in space. Each probability density will need the following properties:
- Parameters that define the distribution e.g.
- Center location
- Spatial size
- Standard deviation
- A measure of symmetry or skew
A multi-dimensional probability function preferably a function that uses types functions as parameters e.g. latex2(
)A theory to update, delete or insert points and the distributions based on changes to points.
Based on this last item, we must maintain a database of 4-dimensional points that we index using 4-dimensional, probability buckets.