
A RESTFUL FRAMEWORK FOR WRITING, RUNNING, AND EVALUATING

CODE IN MULTIPLE ACADEMIC SETTINGS

by

Christopher Ban

A PROJECT DEFENSE

Presented to the Faculty of

The School of Computing at the Southern Adventist University

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Rick Halterman

Collegedale, Tennessee

December, 2017





A RESTFUL FRAMEWORK FOR WRITING, RUNNING, AND EVALUATING

CODE IN MULTIPLE ACADEMIC SETTINGS

Christopher Ban, M.S.

Southern Adventist University, 2017

Adviser: Rick Halterman

In academia, students and professors want a well-structured and implemented

framework for writing and running code in both testing and learning environ-

ments. The current limitations of the paper and pencil medium have led to

the creation of many different online grading systems. However, no known

system provides all of the essential features our client is interested in. Our

system, developed in conjunction with Doctor Halterman, offers the ability to

build modules from flat files, allow code to be compiled and run in the browser,

provide users with immediate feedback, support multiple languages, and offer

a module designed specifically for an examination environment.





v

Contents

Contents v

List of Figures vii

1 Introduction 1

2 Background 5

2.0.1 Learning Management Systems . . . . . . . . . . . . . . . . 7

2.0.1.1 Analysis: Moodle . . . . . . . . . . . . . . . . . . . . 7

2.0.1.2 Analysis: Edmodo . . . . . . . . . . . . . . . . . . . 9

2.0.1.3 Analysis: The Virtual Programming Lab . . . . . . . 10

2.0.1.4 Analysis: Javabrat . . . . . . . . . . . . . . . . . . . 11

2.0.2 Automated Programming Evaluation Systems . . . . . . . . 12

2.0.2.1 Analysis: Web-based Center for Automated Testing 14

2.0.2.2 Analysis: Turing’s Craft CodeLabs . . . . . . . . . . 15

2.0.2.3 Analysis: CourseMarker . . . . . . . . . . . . . . . . 16

3 Project Implementation 19

3.1 Development Approach . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Task Delineation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



vi

3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Server-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Datafile Design . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Administrative Portal . . . . . . . . . . . . . . . . . . . . . . 25

3.3.5 Testing Security and Integrity . . . . . . . . . . . . . . . . . 26

3.4 System Process Workflow . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Module Selection . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Module Execution . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Code Compilation . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.4 Final Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Testing and Evaluation Results 31

4.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Final Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 37

Appendices 39

Appendices 41

A Environment Requirements 41

B System Screenshots 43

Bibliography 51



vii

List of Figures

2.1 A simple Moodle quiz module. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A simple VPL module programming assignment [1]. . . . . . . . . . . . . . 11

2.3 A basic Javabrat assignment example [2]. . . . . . . . . . . . . . . . . . . . 13

2.4 A simple Web-CAT module assignment [3]. . . . . . . . . . . . . . . . . . . 14

3.1 A diagram illustrating the high-level process flow. . . . . . . . . . . . . . . 22

3.2 A screenshot displaying an exam coding question built from a datafile. . . . 28

4.1 Evaluation checklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Graphs detailing the peak performance impact during user testing. . . . . . 35

B.1 The start screen of an exam. . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.2 After using the compiler functionality, answers selected in the previous multiple-

choice section cannot be changed. . . . . . . . . . . . . . . . . . . . . . . 45

B.3 Exam results reported back. In this case, the datafile specified not to allow

multiple attempts, but did allow access. This is reported to the user in case

of misunderstanding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.4 The upload interface, showing the alternate datafile format which supports

newlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



viii

B.5 A tree representing the file structure of both the exam datafiles and results,

sorted by class and exam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B.6 A styled report of all submitted results for the selected exam. . . . . . . . . 49

B.7 A pintable exam report of all submitted results for the selected exam. . . . . 50



1

Chapter 1

Introduction

In academia, students and professors want a well-structured and implemented

framework for writing and running code in both testing and learning environ-

ments. In a test or quiz setting, students prefer to type and have the ability to

execute code. In an instructional medium such as a handout or online textbook,

students would prefer to try out code snippets right in the browser without the

need to install or switch to another program. Some on the other hand would

like the ability to build exams and quizzes without multiple or repetitive steps,

possibly leading to a decrease in the creation of these activities (which Cheang

et al. [4] has shown can be crucial.) Finally, automated and near-immediate

grading and feedback remains a huge advantage to both parties. Our client,

Doctor Halterman of Southern Adventist University, has recognized this call for

a framework that satisfies these needs.

Programming tests and quizzes today often are given through the paper and

pencil medium. This medium is not desirable as it does not allow for immediate

feedback, which can frustrate both teachers and students. Students must wait

for results and teachers must invest large amounts of time in grading students’



2

answers. Another problem that arises due to this medium is the inability to

type and format code. For students in a high-pressure environment such as a

quiz or test there is not always time to neatly write code. Erasing or revising

written code can further reduce readability. As a result, teachers and students

are forced to read and work with messy answers. Finally, this medium does

not allow for the possibility of compiling and running code. The ability to exe-

cute code allows students to fix small mistakes such as syntax errors and other

problems that do not necessarily have any implication on the testing content.

Online textbooks and other related learning environments suffer from sim-

ilar problems (i.e., no immediate feedback, and readability issues), with the

addition of the need to switch to a different application completely. Using these

media require students to leave the browser, have a compiler or IDE installed,

and copy or write code snippets in order to try concepts out on their own.

These issues have led to the use and/or creation [5, 6, 7] of two separate

products: Learning Management Systems (LMS), and automated evaluation

systems. LMS’ like Moodle [8, 6, 7] and Edomodo [9, 10, 11] both provide teach-

ers with a web interface for building instructional articles, exams, and quizzes

and provide students with a common interface to access those activities. An

LMS can also serve as a secure environment for testing and quizzes, and offer

features such as multiple attempts, instant feedback, and question randomiza-

tion. LMSs also have the capability to integrate add-ons which can provide the

ability to compile and run code written by students, such as Moodle’s plug-in

feature [12].

Modifying or building quizzes and exams via an LMS requires multiple,

repetitive steps that are more time consuming than editing a simple flat file.

In addition, current LMS do not not give statistics on test and quiz properties,



3

such as time spent per question. Existing add-ons for an LMS such as Moo-

dle do not address this issue, and the compiler features do not contain some

of the requested properties mentioned above (e.g., immediate evaluation and

feedback).

As for automatic evaluation systems, students can type and execute code,

run tests, and receive immediate feedback. However, widely used solutions

simply support assignments and code challenges, excluding examination envi-

ronments and general practice environments.

Therefore, based on our client’s interests stated above, we believe no appli-

cation exists which allows users to quickly build learning modules, exams, or

quizzes via structured text files for students to use, that also give them the abil-

ity to write and run code and receive immediate feedback on submitted work.

This project addresses these issues by creating a framework which provides

a medium with the following goals:

• Allow professors to quickly build activities via simple flat files

• Allow students to be able to type code in an environment that provides

syntax highlighting

• Allow students to compile and run code in a controlled environment

• Allow for the ability to build activities specifically for an examination en-

vironment

• Allow students and professors to get immediate statistics (i.e., time spent

per question/exam, student written code, and data for each test case run

for teachers, and grading data for both)

• Allow for the support of multiple programming languages



4

Given this framework, professors can quickly and easily create quizzes,

tests, and other learning environments, and students can edit and compile code

and receive immediate feedback. We believe this will help professors limit time

spent on building and grading tests and quizzes, and help students focus more

on actual test content, rather than on formatting and cleaning up answers.

For the remainder of our paper, we first cover the background in Chapter 2.

Chapter 3 and Chapter 4 will cover our project architecture/design and testing

respectively. Finally, Chapter 5 presents our conclusion on the research found

and our future work on the Master’s Project.



5

Chapter 2

Background

Currently, there are virtually no systems in widespread use that provide auto-

mated feedback tailored for programming. However there are a limited num-

ber of automated grading systems (as shown in a survey paper by Kyrsti M et

al. [13]) and to move from niche to mainstream it will be necessary for these

automated grading systems to exist and incorporated in LMSs because schools

are moving to such systems as a standard platform on their campus [10].

The most popular systems in use in academics today are Learning Man-

agement Systems (LMS). These products provide teachers and students with

a familiar digital based medium in which to access assignments, grades, and

even tests and quizzes. These systems also allow for modules to be added in

order to provide new features developed by third parties. In addition to these

systems there exists more focused projects that attempt to provide similar ser-

vices, specifically tailored toward programming in education. In this section we

explore the abilities of popular LMSs, and open source programming evaluation

systems which attempt to provide similar functionality.

Our background analysis is broken into two different sections, Learning



6

LMS Customers Users
Edmodo 350,000 58,000,000
Moodle 70,569 89,237,532
SuccessFactors 6,000 45,000,000
Blackboard 16,000 24,000,000
Cornerstone 2,600 27,200,000
SkillSoft 6,700 19,000,000
Instructure 3,000 20,000,000
Saba Software 2,000 33,000,000
Schoology 2,000 20,000,000
Litmos 3,500 6,000,000
Latitude Learning 14,299 4,218,001
Edsby 10,800 1,910,000
Collaborize Classroom 57,600 420,000
Brightspace 2,000 15,000,000
WizIQ Inc 5,000 500,000
NEO LMS 8,700 970,000
Absorb LMS 720 6,200,000
TalentLMS 3,132 1,552,000
Educadium 9,300 75,000
DigitalChalk 4,090 908,440

Table 2.1: The top 20 most popular LMS packages, measured by a combination of
their total number of customers, active users, and online presence (customer and user
data shown in figure above) as of November 2017 [14].

Management Systems in Section 2.0.1 and automated programming evaluation

systems in section 2.0.2, taking into consideration their strengths and weak-

nesses as follows:

• Test and quiz building

• Code formatting and compiling ability

• Answer evaluation and feedback

These three topics will provide a perspective on how the system functions

and how well it addresses our goals.



7

2.0.1 Learning Management Systems

In the subsection below we evaluate the LMS based systems selected for analy-

sis. Table 2.1 shows the most popular LMS software packages [14], from which

we select two mature LMS platforms (Moodle [8, 6, 7] and Edmodo [9, 10, 11])

for analysis along with two LMS modules for Moodle called the Virtual Pro-

gramming Lab [1], and Javabrat [2].

2.0.1.1 Analysis: Moodle

Moodle [8, 6, 7] is a free, open-source LMS for producing modular internet-

based courses that support a modern social constructionist pedagogy. Because

it is open-source, Moodle has a large community contributing many modules

that extend its feature set.

Test and quiz building Moodle has a quiz activity module which allows the

teacher to design and build quizzes consisting of a large variety of question

types, including multiple choice, true-false, and short answer questions. To

make a new quiz/test assignment in Moodle, the teacher may either import a

quiz from a range of different flat file formats [15], or manually add a quiz

module to the course. When creating a quiz manually, the teacher must first

create the quiz activity. To add a new question to the quiz’s question bank, the

teacher must click ’Add’ and then ’+ a new question’. From the next screen,

the teacher must choose the specific question type. Once the question form is

filled in with the question and any necessary options are added the question

can be saved and added to a question bank shown in Figure 2.1. The teacher

must then add questions to the quiz from the question bank.



8

Figure 2.1: A simple Moodle quiz module.

With all of the steps in manually building quizzes, teachers must invest time

in adding items to question banks on top of formulating the actual question

content. While importing questions from flat files is useful in avoiding this over-

head, the type of questions available to be asked are still limited by Moodle’s

standard questions types [16].

Code formatting and compiling Moodle quiz activity modules can accept

multiple choice and text input. However, these input methods do not allow stu-

dents to properly format code, or show syntax highlighting. Similarly, students

do not have the ability to execute code and see results produced by the com-

piler which limits the types of questions that can be presented (e.g., we cannot

ask a student to compile and debug based on the compiler output.)

Answer evaluation and feedback Moodle quiz activity modules provide the

ability to evaluate and grade answers immediately and give students feedback,



9

which is another improvement on the pencil and paper medium. Unfortunately,

due to question limitations mentioned above, there is no ability to run test cases

on student defined code and grade submissions automatically.

2.0.1.2 Analysis: Edmodo

Edmodo [9] is a free social learning platform for schools. It provides teach-

ers and students with a secure way to share classroom materials, and access

homework, grades.

Test and quiz building Edmodo has a quiz activity that allows teachers to

create online quizzes for students and receive instant feedback on grade re-

sults. Unlike Moodle, all Quizzes and Quiz questions must be created within

Edmodo and cannot be imported [17]. The steps to create quizzes are compa-

rable to Moodle’s, and incurs similar overhead. To create a quiz in Edmodo, a

teacher must create a quiz activity, and manually select a question type. Once

the question form is filled in with all necessary information the question can be

saved and added to a question bank.

Similarly with Moodle, Edmodo is limited by the building overhead and the

types of questions available to be asked (Multiple choice, True/False, Short

Answer, and Fill in the blank).

Code formatting and compiling Again, very similar to Moodle, Edmodo

quiz activities can accept multiple choice and text input, which allow students

to type code. However, these input methods do not allow students to properly

format code, or show syntax highlighting. Nor do students have the ability to



10

execute code and see results produced by the compiler which limits the types

of questions that can be presented, similar to Moodle.

Answer evaluation and feedback Edmodo quiz activities provide the abil-

ity to get feedback immediately. Due to question limitations mentioned above

however, there is no ability to run test cases on student’s code and grade sub-

missions automatically in that manner.

2.0.1.3 Analysis: The Virtual Programming Lab

The Virtual Programming Lab (VPL) [1] is an activity module for Moodle that

manages programming assignments and whose main features are:

• Students can edit program source code in the browser

• Students can run programs interactively in the browser

• Students and teachers can run tests to review the programs

Test and quiz building This activity module for Moodle is unfortunately tai-

lored for programming assignments. Because of this, it is not possible to create

an assignment in a test or quiz format.

Code formatting and compiling VPL allows files to be edited from the

browser using the code editor component, as shown in Figure 2.2. It also has

the ability to supply initial skeleton code. This added functionality allows stu-

dents to run and evaluate programs without requiring them to install compilers

or IDEs. The code editor component provides formatting as well as syntax high-

lighting, which is useful for students both reading and writing code.



11

Figure 2.2: A simple VPL module programming assignment [1].

Answer evaluation and feedback VPL allows for scripts to be set to evalu-

ate every submission, which enables students to receive feedback on their code

based on test cases. However, this takes more time to set up than simply defin-

ing test cases and is geared more towards programming assignments instead

of quizzes and tests.

2.0.1.4 Analysis: Javabrat

Javabrat [2] is a web-based grader useful for students learning Java and Scala

languages. It is primarily in the form of a Moodle plugin that facilitates instruc-

tors to grade Java assignments.



12

• Students can edit program source code in the browser

• Students and teachers can add problems to be solved

• Students and teachers can run tests to review the programs and automat-

ically grade them

Test and quiz building Similar to VPL, Javabrat is tailored towards program-

ming assignments. Because of this, it is not possible to create an assignment in

a test or quiz format.

Code formatting and compiling Javabrat allows for code to be typed di-

rectly into the brower, but does not support syntax highlighting, as shown in

Figure 2.3. Similar to VPL, Javabrat has the ability to provide an initial skele-

ton code for students to build on. This setup allows students to type out code

and evaluate results without having to leave the browser.

Answer evaluation and feedback With Javabrat, program results are eval-

uated immediately. When a student completes a solution, it can be evaluated

in the browser by running pre-defined test cases. Once the evaluation is done,

Javabrat sends back an HTML report file generated by the back-end as shown

in the lower part of Figure 2.3.

2.0.2 Automated Programming Evaluation Systems

The following subsection will evaluate the automated programming evaluation

systems selected for analysis. From our research we select three popular auto-

mated programming evaluation systems: Web-CAT [18, 19], Turing’s Craft [20],

and CourseMarker [5, 21].



13

Figure 2.3: A basic Javabrat assignment example [2].



14

Figure 2.4: A simple Web-CAT module assignment [3].

2.0.2.1 Analysis: Web-based Center for Automated Testing

The Web-based Center for Automated Testing (Web-CAT) [18] is a flexible au-

tomated grading system designed to process computer programming assign-

ments. Its main features are:

• Provide immediate feedback based on test-cases and code coverage

• Enable flexibility and extensibility by way of a plug-in based architecture

• Provide a secure and portable product

Test and quiz building Similar to VPL, Web-CAT is tailored for programming

assignments. Because of this, it is not possible to create an assignment in a test

or quiz format.



15

Code formatting and compiling Web-CAT does not allow files to be edited

from the browser. It does however have the ability to supply initial skeleton

code. Without this functionality, students must use their own compiler or IDE.

In Web-CAT, students are required to upload their source code to the correct

assignment as shown in Figure 2.4.

Answer evaluation and feedback Web-CAT uses a composite scoring sys-

tem, which enables students to receive feedback on their code based on their

code correctness, test completeness, and test validity. These three measures,

taken as percentages, are then used to form a composite score [22]. This for-

mula ensures that no aspect of the approach can be ignored, or the student’s

score will suffer. Code correctness is based solely on student written tests, un-

like the other two scores. For test completeness, instructors must choose what

level of coverage should be used for testing completeness, and for test validity,

instructors must set specific reference tests to ensure the student’s tests are

accurate.

2.0.2.2 Analysis: Turing’s Craft CodeLabs

Turing’s Craft CodeLab [20] is the commercial equivalent to WebToTeach [23],

developed to provide fully interactive, hands-on practice environments for learn-

ing computer programming. The supported topics start with the imperative

programming core of Python, C, C++, and Java and then go on to address

procedural and object-oriented programming. The exercises are targeted at a

typical CS1 syllabus.

Its main features are:

• Students can edit and run source code in the browser



16

• Provide immediate feedback based on test-cases in the browser

• Provide teachers with a selection of exercises ranging from short and fo-

cused to more complicated problems intended to be used as teaching aids

Test and quiz building Because Turing’s Craft is targeted towards program-

ming assignments and challenges, it does not support quiz or exam formats.

Code formatting and compiling The Turing’s Craft engine is hosted and

supported by Turing’s Craft and the CodeLab runs in the browser, so students

are able to write and run code directly in the browser. Unfortunately, it does

not support syntax highlighting.

Answer evaluation and feedback Turing’s Craft CodeLab provides student

with immediate feedback on submitted solutions. With each submission, the

instructor’s roster is automatically updated regarding solution correctness. As

a teaching aid, Turing’s Craft research found that CodeLab works best when

required as 5-10% of a student’s grade.

2.0.2.3 Analysis: CourseMarker

CourseMarker [5] was developed for the assessment of Java programming skills

of CS students. CourseMarker has been tailored to student needs by teacher

and student suggestions, building off of an older automated assessment tool

called "Ceilidh" [21]. Its main feature is to allow students and teachers to run

tests and receive in-depth metrics and assessments immediately. CourseMarker

must be installed instead of accessing it through a browser.



17

Exam environment Code formatting Immediate feedback Multi-lang support
Moodle X X
Edmodo X X
VPL X X X
Javabrat X
Web-CAT X X
Turing’s Craft X X
CourseMarker X X

Table 2.2: A visualization of how many of this project’s goals are met by each solution
evaluated above.

Test and quiz building Similar to VPL [1] and Web-CAT [19, 18], Course-

Marker is tailored for programming assignments. Because of this, it is not

possible to create an assignment in a test or quiz format.

Code formatting and compiling CourseMarker does not allow files to be

edited from the client, but it does have the ability to supply initial skeleton

project files. Without this functionality, students must use their own compiler

or IDE.

Answer evaluation and feedback CourseMarker provides grading results

immediately once code solutions are submitted. Students receive feedback on

typography, scalability, and test cases. With typography, CourseMarker checks

the program layout, indentation, and usage of comments. Regarding scalability,

CourseMarker attempts to use different sized datasets when possible. Lastly,

CourseMarker evaluations solutions by checking for exercise dependent fea-

tures defined by the teacher.

In summary, as seen in table 2.2, each of the popular solutions reviewed met

different parts of our client’s overall goals but none met all of them. While a

few such as Web-CAT [19, 18] came close, many of the widely used solutions do

not offer everything this project is attempting to accomplish.





19

Chapter 3

Project Implementation

Our system creates a RESTful web service that provides the following services:

• A quiz/test module generated from a quick and easy flat file which defines

activity settings, question and answer values, grade-point values, and es-

timated difficulty levels, in a medium that allows for code formatting

• An interface to compile, execute code and automatically evaluate output

against test cases

Seven external libaries were utilized in the development of this system, and

the system contains over 2,000 lines of non-library code. In this chapter, we

discuss the development approach, task delineation, system process workflow,

and final deliverables for this system.

3.1 Development Approach

We implemented our system on an Ubuntu unix VM, using Node.js and jQuery

in order to take advantage of modules such as ExpressJS [24] which provided



20

Module/Plugin Purpose
CodeMirror A text editor implemented in JavaScript used for styling and editing code
Express An MVC-based web framework for Node.js used to handle client/server interactions
Body-parser Node.js body parsing middleware used to parse JSON files
Connect-busboy Connect middleware for busboy used to handle file uploads
Deasync JavaScript wrappers of Node event loops used to keep from blocking threads
Fs Simple wrappers of standard POSIX functions used to provide File I/O
Uglify-js JavaScript parser/compressor used to minify scripts
directory-tree Creates a JavaScript object used for displaying a directory tree.
child_process A module which spawns a shell and executes commands within that shell

Table 3.1: Node.js modules and JS plugins used in this system

robust sets of frameworks and features for web applications. These require-

ments are detailed in Appendix A. While some synchronous functions were used

for purposes such as writing data to file and handling compiler input/output, we

generally utilized Node’s asynchronous nature and Javascript’s Promise objects

to minimize blocking. We also made use of the Model-View-Controller design

pattern in order to organize our code and system structure.

Since this system’s intent focused on an exam environment, we considered

security a high priority. With regards to client-side execution, since all scripts

sent from the server to be executed client-side exist in a specific namespace,

interaction through the console window cannot reach the code or any variables

during normal execution and therefore data integrity is ensured. The design

of the system ensures that no exam solutions ever touch the client side and

that the system evaluates all submissions on the servver. Section 3.3.5 covers

security in more detail.

We have utilized two internal Node.js modules (fs, child_process), five ex-

ternal modules, and two jQuery plugins in order to speed up development. All

modules and plugins were licensed under the MIT license [25], with one mod-

ule licensed under the BSD 2-Clause [26]. Table 3.1 lists each of these modules

and their purpose in the system.



21

Task Work Hours
System design and architecture 70
Front-end Examination module 85
Server-side Examination evaluation 80
Administration module 80
Server-side code execution and evaluation 120
Final changes, bug fixes, testing, and documentation 90
Project Completion 525

Table 3.2: A visualization of this project’s goals and rough estimate of hours taken to
complete

3.2 Task Delineation

Development was broken up into six major categories for testing and develop-

ment. Table 3.2 shows an overview of major tasks, including work hours.

3.3 Architecture

Our system’s architecture was distributed across both the server and client.

The interactions are described in this section. The system design and interac-

tions are illustrated in Figure 3.1, and the complete process flow is detailed in

Section 3.4.

3.3.1 Server-side

Node and the ExpressJS [24] framework together which handled routing REST

calls acted as the Controller in this Model-View-Controller (MVC) design. The

majority of the Model’s business logic provided functionality such as compiling

code, building and evaluating exams, and formatting/serving data such as the

core client facing business logic (minified [27] and sent to the client to execute).



22

Figure 3.1: A diagram illustrating the high-level process flow.

3.3.2 Client-side

The View component utilized HTML and jQuery to populate the exam and pro-

vide all View related functionality. An AJAX request made by the client returns

scripts to execute which initiate the rest of the exam. The Controller compo-

nent processes these AJAX calls throughout the exam period, manipulating the

Model and View accordingly. An example of this interaction is a simple compile,

where the client requests the server to compile code and the response updates

the View.

3.3.3 Datafile Design

We use a simple flat file to generate exam content, following the Javascript Ob-

ject Notation (JSON) format. The flat data file is uploaded to the server, parsed

to form a JSON object, and stored. This JSON object has the following structure:



23

0 {

1 "0": {

2 "questionType": "code",

3 "language": "c++",

4 "problem": "Write a C++ function called print that accepts

an integer and prints it out.",

5 "skeleton": ["#include <iostream>\nusing namespace std;\n\n%

READ_IN%\nint main() {\n string x = \"printed\";\n

print(x);\n}\n", "%READ_IN%", "//Write your code here\

nvoid print(string x){\n cout << x;\n}"],

6 "input": ["1"],

7 "output": ["1"],

8 "points": ["15"],

9 "difficulty": ".5"

10 },

11 "prop": {

12 "closeDate": "6-15-2018",

13 "closeTime": "13:30",

14 "allowMultiple": "false",

15 "time": "15",

16 "warn": ["10", "5"],

17 "whitelist": ["0421291", "0421292"],

18 "access": "true"

19 }

20 }



24

Data-structure 3.1: Example JSON datafile object structure

Within this structure, "questionType" can hold one of two values, "code"

or "mchoice". The value of "questionType" defines whether the question is a

coding question or a multiple choice question with randomized answers. I.e.,

questionType determines what result is produced by a given code snippet. Each

field serves the same function for either type of question, excluding the "input"

and "output" fields. The "language" field defines the programming language

used, "problem" defines the question, "skeleton" defines the initial skeleton

code, "points" provides the point value, and "difficulty" defines a difficulty level

which translates into minutes (value * 10 = suggested time) used to produce

suggested completion times. The "skeleton" field also includes an optional us-

age which holds a "hidden skeleton", a replace token, and a "visible skeleton"

for questions that may want to hide some details from the user, instead of just

the standard skeleton. We have shown this optional format in line five of the

example data structure above.

For coding questions, the "input" field utilizes an array that holds different

test-cases. This input value can represent any input a keyboard can provide in a

command-line setting. Each element in the "input" array is a different test case

that will be run against student’s submissions. The "output" field represents

the expected output produced after running each test case using inputs (if any)

from the "input" field.

Multiple choice questions on the other hand, use the "input" field differently.

With this question type, the "problem" field describes the overall instructions

and the "skeleton" field describes the corresponding code snippet, identical to

coding questions (except it is non-editable). However, "input" utilizes a multi-



25

dimensional array, with each internal array holding a sub-question and an array

of options from which students can choose. The "output" field dictates the

indices of the correct options.

The structure also contains a required "prop" field which can hold both re-

quired and optional information about the activity. The required fields "time"

and "warn" are used to control how long an exam will last before automatically

submitting. The optional fields "closeDate" and "closeTime" denote when an

exam will restrict access, "allowMultiple" defines whether students can take an

exam multiple times, and "whitelist" and "access" control access to the exam.

Note that the server’s internal time-zone may not match your own, which can

cause date specific properties to work unexpectedly.

Since our system utilizes the JSON format, code cannot contain line breaks.

Instead, line breaks must be replaced with a Line Feed ("\n") which can cause

the creation of datafiles to become an arduous effort. To address this issue,

skeleton code wrapped with predefined tokens (start: "_«_”, end: "_»_") can

instead be used with the server automatically converting line breaks to Line

Feeds. An example of this format can be seen in Figure B.4.

3.3.4 Administrative Portal

Our system includes an administrative side where both datafiles and test results

can be seen. These files are organized by course and exam. For datafiles,

authenticated users can upload datafiles, edit them, and remove them. Result

files can also be viewed, but not uploaded, edited, or removed. However, exams

have the option to generate a report by walking through each of the result files

and displaying it in a printable dialog window. These interfaces can be found in



26

Appendix B as Figures B.5, B.6, B.7.

3.3.5 Testing Security and Integrity

Security is important for any sort of testing module. Since the AJAX call’s re-

sponse calls the script containing the necessary logic for the client, it exists

only in that namespace. Because of this namespace, interaction through the

console window cannot reach the code or any variables during normal exe-

cution. In order to manipulate anything, a malicious user would have to use

browser developer tools such as breakpoints, and even then it would not ac-

complish anything beyond using their allotted time and distort the presentation

of questions. No exam solutions ever touch the client side and all submissions

are evaluated server-side.

As an added layer of protection, any variables created are local variables and

locked using the Object.freeze() [28] Javascript method. This method prevents

malicious users from adding new properties to the frozen object; prevents ex-

isting properties from being removed; and prevents existing properties, or their

enumerability, configurability, or writability, from changing. In essence, the ob-

ject is effectively immutable. This method is mainly used to lock the answers

given from the multiple-choice part of the exam once students begin the pro-

gramming section in order to keep students from changing their answers in the

multiple-choice section.

Regarding server-side code execution, students could attempt to take ad-

vantage of this system’s architecture and submit malicious code. We decided

on using both Unix filesystem privileges as well as process monitoring to help

protect the system.



27

Lastly, we suggest that a proctor be used in addition to these features as we

have no control over student collaboration and communication. Similarly, prod-

ucts such as Respondus’ LockDown Browser [29] can also provide additional

security by way of a custom browser that locks down the testing environment.

Together, these layers of security limit the ways in which students were able to

collaborate or cheat in these tests.

3.4 System Process Workflow

The system utilizes a Request-Response model, defined as a series of HTTP

requests and responses between the client and server. This process is broken

up into four main stages:

• Module selection

• Module execution

• Code compilation

• Final evaluation

We have shown these interactions in Figure 3.1.

3.4.1 Module Selection

This first step initializes the system. For an exam or quiz, the client will first

post a request to the server’s /getModuleSelector endpoint. This endpoint mini-

fies and sends a script that provides the user with a dialog window and some

additional logic that allows the user to request the specific quiz or exam. This

information includes student ID, course ID, and exam ID.



28

Figure 3.2: A screenshot displaying an exam coding question built from a datafile.

Once submitted, the server parses this information from the requested JSON

datafile, inserts those values into Hyper Text Markup Language (HTML) tem-

plates, and sends the HTML code along with a minified script that holds the

client facing business logic. This templating allows the system to build and

serve a module quickly.



29

3.4.2 Module Execution

At this point in the system’s workflow, the client will now have the full code

which will execute and append the HTML code to the specified Document Ob-

ject Model (DOM) element. Once the student enters the exam and selects ’Be-

gin’, the exam and timers will start. When the exam’s timer elapses, the exam

will then automatically submit all available data to the server for evaluation.

Figure 3.2 shows an example exam built through this process.

3.4.3 Code Compilation

Once the exam or learning module has started, users can compile and run code.

The response will send the language (currently we support C++11 and Python

3.X), code, and any inputs separated by newlines to be read in as standard

input. It should be noted that for the quiz and exam modules, compilation

can only occur once a student has completed the multiple-choice section. The

system will record and freeze all answers from the multiple choice section once

any compilation is initiated.

When compiling, the server creates a temporary directory by concatenating

the current datetime and a random integer ranging from 0 to 9999. Once the

server creates the directory, the code compiles (if necessary) and exectues,

piping in the inputs (if any) as standard input. The response returned will hold

the generated output or error.

3.4.4 Final Evaluation

This section of execution marks the final part in the system’s workflow and only

applies to the quiz and exam module. Two conditions can initiate this process:



30

reaching the exam’s time limit or the user clicking the submit button. Once the

server responds, a modal window displays the calculated score.

The server processes the submitted exam data and writes the results to a re-

sult file (identified by the student’s ID). For grading multiple-choice questions,

comparing the submitted answers’ indices with values from the datafile indi-

cate correctness. Similarly for code questions, comparing the outputs of each

testcase to the expected outputs from the datafile determine correctness. For

coding problems, all test cases must pass to award points.

3.5 Summary

This chapter described the project solution’s architecture, design, and process

flow. It detailed the business logic and syntax necessary to understand the

overall application and create well-formed datafiles and therefore exams.



31

Chapter 4

Testing and Evaluation Results

This chapter reviews the software requirements, the evaluation process to test

those requirements, and the results of that evaluation. Our evaluation relies on

a simple pass/fail process.

We verified component requirements through user testing, integration test-

ing and visual inspections of the system and show a check sheet that lists the

requirements completion status. Figure 4.1 sums up the results of the testing

performed.

4.1 Testing

Our testing approach consisted of both manual inspections and automated test

cases via Selenium [30]. Of the more popular browsers, we selected Chrome [31],

Safari [32], and Firefox [33] as our main platforms to test. With Selenium’s abil-

ity to automate browser interactions, we were able to consistently verify both

specific components and end to end processes successfully. These interactions

included resource loading, error reporting, and code compilation.



32

We were able to consistently verify that modules were created and served as

expected using Selenium to automate interacting with the activity. As Selenium

walked through different sections of the test activity by simulating keystrokes

and clicks, the question and answer values were verified as visible and error

reporting was displayed when expected. However this only proved the expected

elements and values existed in the DOM and were correct, therefore manual

visual inspections were utilized to further confirm the appearance and validity

of the generated modules.

With regards to compilation, Selenium was also used to test the functional-

ity and correctness. With this approach, we were able to automatically select

specific questions, enter predefined code and submit for execution. Results

returned were then read and compared to expected results for verification.

Compilation was also tested via HTTP requests posted directly to the compile

endpoint in order to test that functionality directly.

Full integration testing was used in order to verify exam evaluation and

reporting. This testing again utilized Selenium’s automation to simulate the

taking of an exam and comparing the final score received to the expected score.

Observation of these processes assisted in verifying the results.

Coordinating with Dr. Halterman, Southern Adventist University’s CPTR-

124 students also used the system for both practice and actual exams. Through

this user testing, the system evolved based on feedback and performance ob-

servations.

The following summary describes the testing results and feedback received:

• Practice exams: The feedback received was positive enough to warrant

testing the system in an actual exam. No problems encountered.



33

• Actual exams: The feedback received was positive and very useful as

users’ experience revealed a few bugs such as runaway processes, and

quality of life adjustments such as warnings and extra datafile customiza-

tion.

Modules are served correctly and consistently across platforms.

Questions, sub-questions, and answers are all generated and displayed
correctly.

Server receives, compiles, and runs submitted code and reports results
correctly.

Submissions are received and results are reported successfully.

All question specific test-cases run and evaluate successfully.

Exam results are immediately reported to user and stored successfully.

Figure 4.1: Evaluation checklist.

4.2 Evaluation

User and integration testing and feedback paired with visual inspections show

that our solution meets the requirements and goals set for this project. From

creating the module datafile to grading submissions and waiting for test results,

time spent was noticeably reduced. After implementing user testing feedback,

performance evaluation showed that the system was able to handle loads with

a negligable performance hit.

During the first testing session, an interaction between Node’s child_process.exec

timeout functionality and infinite loops caused timeouts to fail and the CPU us-



34

age to rise to 99% as these programs kept running. After the cause for these

run-away processes was found, we implemented a monitoring solution that kept

these programs from continuing infinitely. The peak performance impact after

the fix was implemented is shown in Figure 4.2.

4.3 Final Deliverables

Once the project was completed, we delivered the following materials to the

client:

• Application source code

• Access to project source control

• Documentation on setup, installation, and datafile formatting

• Final project report

https://github.com/chrisban/cs-eval-fw


35

Figure 4.2: Graphs detailing the peak performance impact during user testing.





37

Chapter 5

Conclusion

Our client wanted a well-structured and implemented framework for writing

and running code in both testing and learning environments. The current solu-

tions reviewed in Table 2.2 cover most of the goals of this project in some form,

however we did not find one that met all of the goals according to our client’s

specifications stated in Chapter 1.

In this thesis, we implemented a separate framework to remedy the above

issues. Based on our research and testing results, our solution will help both

students and teachers in many aspects of programming examinations as de-

scribed in Chapter 1. The opportunity to type and format code, along with the

ability to compile and execute code is helpful to students and allows them to

focus on actual test content and non-trivial syntax or formatting issues. This

solution also can help to dramatically cut down on the time it takes to build and

grade exams due to the simple flat file format and automated grading. There-

fore this solution will be of great benefit to the student as well as the professor,

saving them both time and effort.

For future work we suggest adding support for other learning environment



38

modules such as online textbooks, and a more intuitive way of adding support

for new languages. We also suggest further research into work done by Singh

et al. [34] in order to create and provide more meaningful feedback such as

potential corrections to failed test cases. In regards to furthering security, we

suggest an approach similar to the algorithm created by Chen et al. [35], which

used sandboxing and regular expressions to filter out malicious code.



39

Appendices





41

Appendix A

Environment Requirements

This project was developed on an Ubuntu 16.04.2 x64 Linux server. The follow-

ing packages must be installed:

• Node (v8.9.1)

• Python (v3.5.2)

• g++-5

• Forever (Optional Node Package Manager (npm) package, used for ensur-

ing that a given script runs continuously)





43

Appendix B

System Screenshots



44

Figure B.1: The start screen of an exam.



45

Figure B.2: After using the compiler functionality, answers selected in the previous
multiple-choice section cannot be changed.



46

Figure B.3: Exam results reported back. In this case, the datafile specified not to
allow multiple attempts, but did allow access. This is reported to the user in case of
misunderstanding.



47

Figure B.4: The upload interface, showing the alternate datafile format which sup-
ports newlines.



48

Figure B.5: A tree representing the file structure of both the exam datafiles and re-
sults, sorted by class and exam.



49

Figure B.6: A styled report of all submitted results for the selected exam.



50

Figure B.7: A pintable exam report of all submitted results for the selected exam.



51

Bibliography

[1] D. Thiébaut, “Automatic evaluation of computer programs using

moodle’s virtual programming lab (vpl) plug-in,” J. Comput. Sci.

Coll., vol. 30, no. 6, pp. 145–151, June 2015. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2753024.2753053

[2] A. Patil, “Automatic Grading of Programming Assignments,” Mas-

ter’s thesis, San Jose State University, 2010. [Online]. Avail-

able: http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1050&

context=etd_projects

[3] S. Edwards. (2006, April) The web-cat community: Resources for

automated grading and testing. [Online]. Available: http://web-cat.org/

group/web-cat

[4] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated grading of

programming assignments in an academic institution,” Computers & Edu-

cation, vol. 41, no. 2, pp. 121–131, 2003.

[5] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas, “Automated

assessment and experiences of teaching programming,” J. Educ.

Resour. Comput., vol. 5, no. 3, 2005. [Online]. Available: http:

//doi.acm.org/10.1145/1163405.1163410

http://dl.acm.org/citation.cfm?id=2753024.2753053
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1050&context=etd_projects
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1050&context=etd_projects
http://web-cat.org/group/web-cat
http://web-cat.org/group/web-cat
http://doi.acm.org/10.1145/1163405.1163410
http://doi.acm.org/10.1145/1163405.1163410


52

[6] M. Dougiamas and P. Taylor, “Moodle: Using learning communities to cre-

ate an open source course management system,” 2003.

[7] M. Dougiamas and P. C. Taylor, “Interpretive analysis of an internet-based

course constructed using a new courseware tool called moodle,” in 2nd

Conference of HERDSA (The Higher Education Research and Develop-

ment Society of Australasia), 2002, pp. 7–10.

[8] Moodle. (2015) The moodle project. [Online]. Available: https:

//moodle.org/

[9] Edmodo. (2015) Edmodo: Connect with students and parents online.

[Online]. Available: https://www.edmodo.com/

[10] K. Balasubramanian, V. Jaykumar, and L. N. Fukey, “A study on âĂIJstu-

dent preference towards the use of edmodo as a learning platform to cre-

ate responsible learning environmentâĂİ,” Procedia-Social and Behavioral

Sciences, vol. 144, pp. 416–422, 2014.

[11] S.-S. Liaw, H.-M. Huang, Y.-T. A. Liaw, and Y.-H. A. Liaw, “Exploring learn-

ers attitudes toward a social e-learning system: A case study of the ed-

modo,” in EdMedia: World Conference on Educational Media and Technol-

ogy. Association for the Advancement of Computing in Education (AACE),

2016, pp. 764–769.

[12] Moodle. (2015) Moodle: Installing add-ons. [Online]. Available: https:

//docs.moodle.org/25/en/Installing_add-ons

https://moodle.org/
https://moodle.org/
https://www.edmodo.com/
https://docs.moodle.org/25/en/Installing_add-ons
https://docs.moodle.org/25/en/Installing_add-ons


53

[13] K. M. Ala-Mutka, “A survey of automated assessment approaches for pro-

gramming assignments,” Computer science education, vol. 15, no. 2, pp.

83–102, 2005.

[14] Capterra. (2017, November) Top lms software.

Capterra Inc. [Online]. Available: https://www.capterra.com/

learning-management-system-software/#infographic

[15] Moodle. (2015) Moodle: Question import formats. [Online]. Available:

https://docs.moodle.org/25/en/Installing_add-ons

[16] Moodle. (2015) Moodle: Question types. [Online]. Available: https:

//docs.moodle.org/24/en/Question_types

[17] Edmodo. (2017) Edmodo: Quiz limitations. [Online]. Available: https:

//support.edmodo.com/hc/en-us/articles/205004854-Quiz-Limitations

[18] S. H. Edwards, “Work-in-progress: Program grading and feedback

generation with web-cat,” in Proceedings of the First ACM Conference

on Learning @ Scale Conference, ser. L@S ’14. New York, NY, USA:

ACM, 2014, pp. 215–216. [Online]. Available: http://doi.acm.org/10.1145/

2556325.2567888

[19] ——, “Teaching software testing: automatic grading meets test-first

coding,” in Companion of the 18th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications.

ACM, 2003, pp. 318–319.

[20] D. Arnow and O. Barshay. Turing’s craft. [Online]. Available: http:

//www.turingscraft.com/codelabs.php

https://www.capterra.com/learning-management-system-software/#infographic
https://www.capterra.com/learning-management-system-software/#infographic
https://docs.moodle.org/25/en/Installing_add-ons
https://docs.moodle.org/24/en/Question_types
https://docs.moodle.org/24/en/Question_types
https://support.edmodo.com/hc/en-us/articles/205004854-Quiz-Limitations
https://support.edmodo.com/hc/en-us/articles/205004854-Quiz-Limitations
http://doi.acm.org/10.1145/2556325.2567888
http://doi.acm.org/10.1145/2556325.2567888
http://www.turingscraft.com/codelabs.php
http://www.turingscraft.com/codelabs.php


54

[21] E. Foxley, C. Higgins, and A. Tsintsifas, “The ceilidh system: a general

overview,” in Second Annual Computer Assisted Assessment Conf, 1996.

[22] S. Edwards. (2006, April) What is web-cat. [Online]. Available:

http://wiki.web-cat.org/WCWiki/WhatIsWebCat

[23] D. Arnow and O. Barshay, “Webtoteach: An interactive focused pro-

gramming exercise system,” in Frontiers in Education Conference, 1999.

FIE’99. 29th Annual, vol. 1. IEEE, 1999, pp. 12A9–39.

[24] ExpressJS. (2017) Express - node.js web application framework. [Online].

Available: https://expressjs.com/

[25] SPDX. (2015) Mit license. [Online]. Available: https://spdx.org/licenses/

MIT.html

[26] SPDX. (2015) Bsd 2-clause licence. [Online]. Available: https://spdx.org/

licenses/BSD-2-Clause.html

[27] R. Anderson. (2012) Bundling and minification. [On-

line]. Available: https://docs.microsoft.com/en-us/aspnet/mvc/overview/

performance/bundling-and-minification#minification

[28] M. web docs. (2018) The object.freeze() specification and documenta-

tion. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Object/freeze

[29] Respondus. (2015) Respondus lockdown browser. [Online]. Available:

https://www.respondus.com/products/lockdown-browser/

[30] SeleniumHQ. (2017) Selenium - web browser automation. [Online].

Available: http://seleniumhq.org/

http://wiki.web-cat.org/WCWiki/WhatIsWebCat
https://expressjs.com/
https://spdx.org/licenses/MIT.html
https://spdx.org/licenses/MIT.html
https://spdx.org/licenses/BSD-2-Clause.html
https://spdx.org/licenses/BSD-2-Clause.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/performance/bundling-and-minification#minification
https://docs.microsoft.com/en-us/aspnet/mvc/overview/performance/bundling-and-minification#minification
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://www.respondus.com/products/lockdown-browser/
http://seleniumhq.org/


55

[31] Google. (2012) Chrome: One fast, simple, and secure browser for

all your devices. [Online]. Available: https://www.google.com/chrome/

browser/desktop/index.html

[32] Apple. (2018) Safari. the best way to see the sites. [Online]. Available:

https://www.apple.com/safari/

[33] Mozilla. (2012) The new firefox. [Online]. Available: https://www.mozilla.

org/en-US/firefox/

[34] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback genera-

tion for introductory programming assignments,” ACM SIGPLAN Notices,

vol. 48, no. 6, pp. 15–26, 2013.

[35] M.-Y. Chen, J.-D. Wei, J.-H. Huang, and D. T. Lee, “Design and applications

of an algorithm benchmark system in a computational problem solving

environment,” in Proceedings of the 11th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education, ser. ITICSE

’06. New York, NY, USA: ACM, 2006, pp. 123–127. [Online]. Available:

http://doi.acm.org/10.1145/1140124.1140159

https://www.google.com/chrome/browser/desktop/index.html
https://www.google.com/chrome/browser/desktop/index.html
https://www.apple.com/safari/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
http://doi.acm.org/10.1145/1140124.1140159

	Contents
	List of Figures
	Introduction
	Background
	Learning Management Systems
	Analysis: Moodle
	Analysis: Edmodo
	Analysis: The Virtual Programming Lab
	Analysis: Javabrat

	Automated Programming Evaluation Systems
	Analysis: Web-based Center for Automated Testing
	Analysis: Turing's Craft CodeLabs
	Analysis: CourseMarker



	Project Implementation
	Development Approach
	Task Delineation
	Architecture
	Server-side
	Client-side
	Datafile Design
	Administrative Portal
	Testing Security and Integrity

	System Process Workflow
	Module Selection
	Module Execution
	Code Compilation
	Final Evaluation

	Summary

	Testing and Evaluation Results
	Testing
	Evaluation
	Final Deliverables

	Conclusion
	Appendices
	Appendices
	Environment Requirements
	System Screenshots
	Bibliography

