One's Complement

January 26, 2020

Given an n-bit binary string, I, the leftmost bit indicates the sign of an integer in 1 s complement representation. In this left most position a 1 indicates a negative value while a 0 indicates a positive value. The representation for positive integers corresponds to unsigned representation where the leftmost bit must contain a 0 .

Negative integers are formed by reversing all bits to form the bitwise complement of the corresponding positive integer. If we represent I by the n-bit binary sequence, $b_{n} \ldots b_{1}$ then $-I$ in one's complement is given by $\overline{b_{n}} \ldots \overline{b_{1}}$ where $\overline{b_{i}}=1-b_{i}$ for all i.

Let's see what that looks like in Math speak

Let I be a negative one's complement integer. The value of I is obtained by forming its one's complement:

$$
\begin{equation*}
-I=\sum_{i=0}^{n-1}\left(1-b_{i}\right) \cdot 2^{i}=\sum_{i=0}^{n-1} 2^{i}-\sum_{i=0}^{n-1} b_{i} \cdot 2^{i} \tag{1}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
I=\sum_{i=0}^{n-1} b_{i} \cdot 2^{i}-\left(2^{n}-1\right) \tag{2}
\end{equation*}
$$

Negative one's complement integers are formed by subtracting a bias of $2^{n}-1$ from the positive integers. Taking into account the sign bit $b n$, the value for a positive or negative $(\mathrm{n}+1)$ bit one's complement integer is:

$$
\begin{equation*}
I=\sum_{i=0}^{n-1} b_{i} \cdot 2^{i}-b_{n}\left(2^{n}-1\right) \tag{3}
\end{equation*}
$$

Recalling that the left most bit only represents the sign, the range of values for an n-bit one's complement integer is $-\left(2^{n-1}-1\right)$ to $2^{n-1}-1$.

Examples:

Since the complement of 0 is $2^{n+1}-1$, there are different representations for +0 and -0 in one's complement. Examples of 8 -bit one's complement numbers:

Binary	Decimal
00000000	0
11111111	-0
00000011	3
11111100	-3

The range of 8 -bit one's complement integers is -127 to +127 .
Addition of signed numbers in one's complement is performed using binary addition with end-around carry. If there is a carry out of the most significant bit of the sum, this bit must be added to the least significant bit of the sum.

To add decimal 17 to decimal -8 in 8-bit one's complement:

	0001	0001		
+	1111	0111		
1	0000	1000		
	\hookrightarrow	+1		
	0000	1001	$=$	(17)
---:				
(-8)				

