One's Complement

January 26, 2020

Given an n-bit binary string, I, the leftmost bit indicates the sign of an integer in 1s complement representation. In this left most position a 1 indicates a negative value while a 0 indicates a positive value. The representation for positive integers corresponds to unsigned representation where the leftmost bit must contain a 0.

Negative integers are formed by reversing all bits to form the bitwise complement of the corresponding positive integer. If we represent I by the n-bit binary sequence, $b_n \dots b_1$ then -I in one's complement is given by $\overline{b_n} \dots \overline{b_1}$ where $\overline{b_i} = 1 - b_i$ for all i.

Let's see what that looks like in Math speak

Let I be a negative one's complement integer. The value of I is obtained by forming its one's complement:

$$-I = \sum_{i=0}^{n-1} (1-b_i) \cdot 2^i = \sum_{i=0}^{n-1} 2^i - \sum_{i=0}^{n-1} b_i \cdot 2^i.$$
(1)

Thus,

$$I = \sum_{i=0}^{n-1} b_i \cdot 2^i - (2^n - 1).$$
⁽²⁾

Negative one's complement integers are formed by subtracting a bias of $2^n - 1$ from the positive integers. Taking into account the sign bit bn, the value for a positive or negative (n+1) bit one's complement integer is:

$$I = \sum_{i=0}^{n-1} b_i \cdot 2^i - b_n (2^n - 1).$$
(3)

Recalling that the left most bit only represents the sign, the range of values for an *n*-bit one's complement integer is $-(2^{n-1}-1)$ to $2^{n-1}-1$.

Examples:

Since the complement of 0 is $2^{n+1} - 1$, there are different representations for +0 and -0 in one's complement. Examples of 8-bit one's complement numbers:

Binary	Decimal
00000000	0
11111111	-0
00000011	3
11111100	-3

The range of 8-bit one's complement integers is -127 to +127.

Addition of signed numbers in one's complement is performed using binary addition with end-around carry. If there is a carry out of the most significant bit of the sum, this bit must be added to the least significant bit of the sum.

To add decimal 17 to decimal -8 in 8-bit one's complement:

		0001	0001		(17)
+		1111	0111		(-8)
	1	0000	1000		
		\hookrightarrow	+1		
		0000	1001	=	(9)