1 Presburger Arithmetic: Formal Theory Description

1. $\forall x: \neg(0=x+1)$
2. $\forall x \forall y: \neg(x=y) \Rightarrow \neg(x+1=y+1)$
3. $\forall x: x+0=x$
4. $\forall x \forall y:(x+y)+1=x+(y+1)$
5. If $P(x)$ is any formula involving the constants $0,1,+,=$ and a single free variable x, then the following formula is an axiom:

$$
(P(0) \wedge \forall x: P(x) \Rightarrow P(x+1)) \Rightarrow \forall x: P(x)
$$

Not that such concepts as divisibility of prime numbers cannot be formalized in Presburger arithmetic. Here is a typical theorem that can be proven from the above axioms:

$$
\forall x \forall y:((\exists z: x+z=y+11) \Rightarrow(\forall z: \neg(((1+y)+1)+z=x)))
$$

