Attachment 'PresburgerAxioms.tex'
Download 1 \documentclass{article}
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 \usepackage{geometry}
4
5 %TCIDATA{OutputFilter=LATEX.DLL}
6 %TCIDATA{Version=5.00.0.2552}
7 %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
8 %TCIDATA{Created=Thursday, June 16, 2005 10:14:00}
9 %TCIDATA{LastRevised=Thursday, June 16, 2005 10:49:33}
10 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
11 %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Blank - Standard LaTeX Article">}
12 %TCIDATA{CSTFile=40 LaTeX article.cst}
13
14 \newtheorem{theorem}{Theorem}
15 \newtheorem{acknowledgement}[theorem]{Acknowledgement}
16 \newtheorem{algorithm}[theorem]{Algorithm}
17 \newtheorem{axiom}[theorem]{Axiom}
18 \newtheorem{case}[theorem]{Case}
19 \newtheorem{claim}[theorem]{Claim}
20 \newtheorem{conclusion}[theorem]{Conclusion}
21 \newtheorem{condition}[theorem]{Condition}
22 \newtheorem{conjecture}[theorem]{Conjecture}
23 \newtheorem{corollary}[theorem]{Corollary}
24 \newtheorem{criterion}[theorem]{Criterion}
25 \newtheorem{definition}[theorem]{Definition}
26 \newtheorem{example}[theorem]{Example}
27 \newtheorem{exercise}[theorem]{Exercise}
28 \newtheorem{lemma}[theorem]{Lemma}
29 \newtheorem{notation}[theorem]{Notation}
30 \newtheorem{problem}[theorem]{Problem}
31 \newtheorem{proposition}[theorem]{Proposition}
32 \newtheorem{remark}[theorem]{Remark}
33 \newtheorem{solution}[theorem]{Solution}
34 \newtheorem{summary}[theorem]{Summary}
35 \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
36 \input{tcilatex}
37 \geometry{left=1in,right=1in,top=1in,bottom=1in}
38 \begin{document}
39
40
41 \section{Presburger Arithmetic: Formal Theory Description}
42
43 \begin{enumerate}
44 \item $\forall x:\lnot (0=x+1)$
45
46 \item $\forall x\forall y:\lnot (x=y)\Rightarrow \lnot (x+1=y+1)$
47
48 \item $\forall x:x+0=x$
49
50 \item $\forall x\forall y:(x+y)+1=x+(y+1)$
51
52 \item If $P(x)$ is any formula involving the constants $0,1,+,=$ and a
53 single free variable $x$, then the following formula is an axiom:%
54 \[
55 (P(0)\wedge \forall x:P(x)\Rightarrow P(x+1))\Rightarrow \forall x:P(x)
56 \]
57 \end{enumerate}
58
59 Not that such concepts as divisibility of prime numbers cannot be formalized
60 in Presburger arithmetic. Here is a typical theorem that can be proven from
61 the above axioms:%
62 \[
63 \forall x\forall y:((\exists z:x+z=y+11)\Rightarrow (\forall z:\lnot
64 (((1+y)+1)+z=x)))
65 \]
66
67 \end{document}
Attached Files
To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.You are not allowed to attach a file to this page.