Miller-Rabin: Theory and Background

Scot Anderson, Ph.D.

March 12, 2013

1 Introduction

This lecture series gives an introduction to the theory used in the Miller-Rabin algorithm. We assume a knowlege of prime number concepts and factoring in general, however we do not cover nor do we assume a background in abstract algebra. This lecture is take from Sections 8.1 and 4.3 of (Stallings)

2 Prime Numbers

We start with a definition of prime numbers.
Definition 1 A prime number is a number $p \in \mathbb{Z}^{+}$which has only two natural numbers that divide p evenly, p and 1 . We denote the set of all prime numbers \mathcal{P}.

Any positive integer a can be written as a product of prime numbers. When we write this product down we have factored a and the multiplication expression is unique.

$$
\begin{equation*}
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{t}^{a_{t}} \tag{1}
\end{equation*}
$$

where $p_{1}<p_{2}<\ldots<p_{t}$. We can write down a shorthand notation of (1) as follows

$$
\begin{equation*}
a=\prod_{p \in \mathcal{P}} p^{a_{p}} \tag{2}
\end{equation*}
$$

Multiplying two numbers becomes the process of adding the exponents of the primes shared in common and including the other unique terms. If $k=a \cdot b$, then using the notation from (2)

$$
k=\prod_{p \in \mathcal{P}} p^{k_{p}}
$$

where $k_{p}=a_{p}+b_{p}$.
For example

$$
\begin{aligned}
9 \times 12 & =\left(3^{2}\right)\left(3 \cdot 2^{2}\right) \\
& =3^{3} \cdot 2^{2}
\end{aligned}
$$

What does it mean in terms of factors if we say that a divides b ? Simply put the factors of a must be contained in the factors of b. Suppose we let $a=15$ and $b=165$. Does 15 divide 165 ? Lets look at the factors.

$$
\begin{aligned}
15 & =3 \cdot 5 \\
165 & =3 \cdot 5 \cdot 11
\end{aligned}
$$

We see that the factors of 15 are indeed contained in 165 . This amounts to simplifying a division problems.

$$
\frac{3 \cdot 5 \cdot 11}{3 \cdot 5}=11
$$

where crossing off the 3 's and the 5 's leaves 11 .
This leads to another interesting mathematical problem. That of finding a gcd (a, b). But the gcd (a, b) is just the factors in common.

Definition 2 The greatest common divisor of two natural numbers a, b denoted, $\operatorname{gcd}(a, b)$ is the largest natural number that divides both a and b. Mathematically this can be stated as

$$
k=\operatorname{gcd}(a, b)
$$

where $k_{p}=\min \left(a_{p}, b_{p}\right)$.
Factoring a large number is no easy task, so the preceeding information is useful for definition, but does not directly lead to a practical method of calculating the greatest common divisor.

3 Euclidean Algorithm

Section 2 talked about gcd of two numbers and the Euclidean algorithm is all about finding the gcd of two numbers. Let's start by considering a few special cases and definitions. First

$$
\begin{equation*}
\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|) \tag{3}
\end{equation*}
$$

which just means that the gcd will always be positive and we can ignore the sign of the integers a and b.
We also have the obvious relation

$$
\operatorname{gcd}\left(p_{1}, p_{2}\right)=1
$$

where $p_{1}, p_{2} \in \mathcal{P}$. But do p_{1} and p_{2} have to be prime? No,

$$
\operatorname{gcd}(9,4)=1
$$

and neither of these numbers is prime. But they are relatively prime.
Definition 3 Two numbers $a, b \in \mathbb{Z}^{+}$are relatively prime if $\operatorname{gcd}(a, b)=1$.
Euclid's algorithm is based on the following theorem.
Theorem 4 For any nonnegative integer a and any positive integer b and $a \geq b$,

$$
\begin{equation*}
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \quad \bmod b) \tag{4}
\end{equation*}
$$

Proof. Let $d=\operatorname{gcd}(a, b)$ where a, b satisfy the above conditions. Then by the definition of gcd,

$$
\begin{gathered}
d \mid a \\
d \mid b
\end{gathered}
$$

For any positive integer b, a can be expressed in the form

$$
\begin{equation*}
a=k b+r \tag{5}
\end{equation*}
$$

This give the equivalence relation

$$
\begin{align*}
a & \equiv r(\bmod b) \tag{6}\\
a \bmod b & =r \tag{7}
\end{align*}
$$

This form is just equivalence modulo b and is an easy way to see the meaning of the equavalence relation symbol \equiv.

Now

$$
d|a \Rightarrow d|[k b+r]
$$

We know that

$$
\begin{aligned}
d \mid b & \Rightarrow d \mid k b \\
d \mid a & \Rightarrow d \mid k b \text { and } d \mid r \\
& \Rightarrow d \mid(a \quad \bmod b)
\end{aligned}
$$

hence the set of common divisor of a and b are equivalent to the set of divisors of b and $a \bmod b$.
From this we get the Euclidean algorithm.
$\operatorname{EUCLID}(a, b)$

1. $A \leftarrow a ; B \leftarrow b$
2. if $B=0$ return A
3. $R=A \bmod B$
4. $A \leftarrow B$
5. $B \leftarrow R$
6. goto 2

This help us find the $\operatorname{gcd}(a, b)$, but can we get more? Without delving into Galois Fields consider finding the $\operatorname{gcd}(a, b)$. We can still use Euclid's algorithm, but we can also find the inverse of a with respect to b using Euclid's Extended algorithm. This is useful when looking at the RSA algorithm.

EXTENED_EUCLID (m(x), b(x))

1. $A=[1,0, m(x)]$
2. $B=[0,1, b(x)]$
3. while $(B[3]>1)$ \{
4. $\quad q=$ quotient $(A[3] / B[3])$
5. $T=A-q B$
6. $\quad A=M$
7. $B=T$
8. $\}$
9. if $(B[3]=0)$ Print: gcd $=A[3]$, there is no inverse!
10. if $(B[3]=1)$ Print $\operatorname{gcd}=1$, and the inverse is $B[2]$
