Differences between revisions 15 and 16
Revision 15 as of 2006-01-22 17:52:20
Size: 5147
Editor: yakko
Comment:
Revision 16 as of 2006-01-22 17:57:02
Size: 5182
Editor: yakko
Comment:
Deletions are marked like this. Additions are marked like this.
Line 110: Line 110:
}}}
Line 111: Line 112:
}}} == Section 2.5.2 Boolean Model ==

Chapter 1 + Section 2.1 Introduction


attachment:InformationRetreivalProcess.jpg

Information Retrieval Process


  • Three Models of Browsing
    • Flag
    • Structure guided
    • Hypertext

Section 2.2 A taxonomy of Information Retrieval Models

  • Predicting which documents are relevant is usaually dependent on a ranking algorithm.

  • The three classic models in information retreival are:
    • Boolean Model: In the boolean model documents and queries are represented as sets of index terms, thus we say this model is a set theoretic model

    • Vector Model: In the vector model documents and queries are represented as vectors in a t-dimensional space, thus we say that the model is algebraic.

    • Probabilistic Model: The framework for modeling document and query representations is based on probability theory, and thus we sat that the model is prababilistic.

Section 2.3 Retrieval: Ad hoc and Filtering

The following is the formal definition for IR from MIR p 23.

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
An information retrieval model is a quadruple $D,Q,F,R(q_i , d_j))$ where 
\begin{enumerate}
\item $D$ is a set composed of logical views (or representations) for the {\bf documents} in the collection.
\item $Q$ is a set composed of logical views (or representations) for the user information needs. Such representations are called {\bf queries}
\item $F$ is a {\bf framework} for modeling document representations, queries and their relationships.
\item $R(q_i,d_j)$ is a {\bf ranking function} wich associates a real number with a query $q_i \in Q$ and a document represenation $d_j \in D$. Such ranking defines an ordering among the documents with regard to the query $q_i$.
\end{enumerate}
\end{definition}

Section 2.5.1 Basic Concepts of Classic IR

  • Each document is described by a set of representative key workds calle index terms.

  • Index terms are usually nouns. Why? Because verbs, adjectives connectives etc. have little meaning on their own.
  • Index terms have weights described as follows:

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
Let $t$ be the number of index terms in the system and $k_i$ be a generic index term. $K={k_1,...,k_t}$ is the set of all index terms. A weight $w_{i,j} > 0$ is associated with each index term $k_i$ of  a document $d_j$. For an index term which does not appear in the document text, $w_{i,j}=0$. With document $d_j$ is associated an index term vector $\vec{d}_{j}=(w_{1,j},w_{2,j},...,w_{t,j})$. Further, let $g_{i}$ be a function that returns the wieght associated with the index term $k_{i}$ in any $t$-dimensional vector (i.e., $g_{i}(\vec{d}_{j})=w_{i,j}$).
\end{definition}

Section 2.5.2 Boolean Model

unl/Csce810Chapter2 (last edited 2020-01-26 18:49:25 by scot)