Differences between revisions 35 and 36
Revision 35 as of 2006-01-22 19:37:57
Size: 12834
Editor: yakko
Comment:
Revision 36 as of 2006-01-22 19:40:36
Size: 13050
Editor: yakko
Comment:
Deletions are marked like this. Additions are marked like this.
Line 278: Line 278:
\end{definition}

}}}

One such term wights formula was given by Salton and Buckley as
\begin{equation}
w_{i,q}=\left( 0.5+\frac{0.5~freq_{i,q}}{\max_{l}\left( freq_{l,q}\right)
}\right) \times\log\frac{N}{n_{i}}%
\end{equation}
\end{definition}

}}}

Chapter 1 + Section 2.1 Introduction


attachment:InformationRetreivalProcess.jpg

Information Retrieval Process


  • Three Models of Browsing
    • Flag
    • Structure guided
    • Hypertext

Section 2.2 A taxonomy of Information Retrieval Models

  • Predicting which documents are relevant is usaually dependent on a ranking algorithm.

  • The three classic models in information retreival are:
    • Boolean Model: In the boolean model documents and queries are represented as sets of index terms, thus we say this model is a set theoretic model

    • Vector Model: In the vector model documents and queries are represented as vectors in a t-dimensional space, thus we say that the model is algebraic.

    • Probabilistic Model: The framework for modeling document and query representations is based on probability theory, and thus we sat that the model is prababilistic.

Section 2.3 Retrieval: Ad hoc and Filtering

The following is the formal definition for IR from MIR p 23.

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
An information retrieval model is a quadruple $D,Q,F,R(q_i , d_j))$ where 
\begin{enumerate}
\item $D$ is a set composed of logical views (or representations) for the {\bf documents} in the collection.
\item $Q$ is a set composed of logical views (or representations) for the user information needs. Such representations are called {\bf queries}
\item $F$ is a {\bf framework} for modeling document representations, queries and their relationships.
\item $R(q_i,d_j)$ is a {\bf ranking function} wich associates a real number with a query $q_i \in Q$ and a document represenation $d_j \in D$. Such ranking defines an ordering among the documents with regard to the query $q_i$.
\end{enumerate}
\end{definition}

Section 2.5.1 Basic Concepts of Classic IR

  • Each document is described by a set of representative key workds calle index terms.

  • Index terms are usually nouns. Why? Because verbs, adjectives connectives etc. have little meaning on their own.
  • Index terms have weights described as follows:

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
Let $t$ be the number of index terms in the system and $k_i$ be a generic index term. $K={k_1,...,k_t}$ is the set of all index terms. A weight $w_{i,j} > 0$ is associated with each index term $k_i$ of  a document $d_j$. For an index term which does not appear in the document text, $w_{i,j}=0$. With document $d_j$ is associated an index term vector $\vec{d}_{j}=(w_{1,j},w_{2,j},...,w_{t,j})$. Further, let $g_{i}$ be a function that returns the wieght associated with the index term $k_{i}$ in any $t$-dimensional vector (i.e., $g_{i}(\vec{d}_{j})=w_{i,j}$).
\end{definition}

Section 2.5.2 Boolean Model

normal form as latex2($[\vec{q}_{dnf}=(1,1,1)\vee (1,1,0)\vee (1,0,0)]$).

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
For the Boolean model, the index term weight variables are all binary ie.e, $w_{i,j} \in {0,1}$. A query $q$ is a conventional boolean expression. Let $\vec{q}_{dnf}$ be the disjunctive normal form for the query $q$. further, let $\vec{q}_{cc}$ be any of the conjunctive components of $\vec{q}_{dnf}$. The similarity of a document $d_j$ to the query $q$ is defined as 
\begin{equation}
sim(d_{j},q)= \left\{
  \begin{array}{ll}
  1 & if~\exists \vec{q}_{cc}~|~(\vec{q}_{cc}\in \vec{q}_{dnf})\wedge (\forall k_{i},g_{i}(\vec{d}_{j})=g_{i}(\vec{q}_{cc}) \\
  0 & otherwise
  \end{array}
\right.
\end{equation}
If $sim(d_j,q)=1$ then the Boolean model predicts that the document $d_j$ is relevant to the query $q$ (it might not be). Otherwise, the prediction is that the document is not relevant.

\end{definition}

Section 2.5.3 Vector Model

  • Weights are non-binary that is real numbers
  • This allows us to calculate a degree of similarity.

\usepackage{amsmath}
\setcounter{MaxMatrixCols}{30}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
For the vector model, the weight $w_{i,j}$ associated with a pair
$(k_{i},j_{j})$ is positive and non-binary. Further, the index terms in the
query are also weighted. Let $w_{i,q}$ be the weight associated with the pair
$[k_{i},q]$, where $w_{i,q}\geq0$. Then, the query vector $\vec{q}$ is defined
as $\vec{q}=(w_{1,q},...,w_{t,q})$ where $t$ is the total number of index
terms in the system. As before, the vector for a document $d_{j}$ is
represented by $\vec{d}_{j}=(w_{1,j},...,w_{t,j})$.
\end{definition}

Thus we have a document $d_{j}$ and user query $q$ represented as
$t$-dimensional vectors. Similarity is defined cosine of the angle between the
document vector and the query vector as follows:

attachment:csce810_2_2.png

Figure 2

Having defined similarity the we now have a method for ranking and we can determine what is relevant by setting a threshold on the degree of similarity. This is essentially a clustering algorithm that clusters documents similar to the query in one set and documents dissimilar to the query in the other set. We say the IR problem can be reduced to a clustering problem determining what documents belong to the relevant set A and which do not. There are two main issues to resolved in a clustering problem:

  1. intra-cluster similarity --> term frequency (tf): One needs to determine what are the features which better describe the objects in set A.

  2. intra-cluster dissimilarity --> inverse document frequency (idf): One needs to determine what are the features which better distinguish the objects in set A from the remaining objects in collection C (the set of all documents).

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
Let $N$ be the total number of documents in the system and $n_i$ be the number of documents in which the index term $k_i$ appears. Let $freq_{i,j}$ be teh raw frequency of term $k_i$ in the document $d_j$ (i.e., the number of times the term $k_i$ is mentioned in the text of the document $d_j$). Then, the {\bf normalized} frequency $f_{i,j}$ of term $k_i$ in document $d_j$ is given by:
\begin{equation}
f_{i,j}=\frac{freq_{i,j}}{\max_{l}(freq_{l,j})}%
\end{equation}
where the maximum is computed over all terms which are mentioned in the text of the document $d_j$. If the term $k_i$ does not appear in the document $d_j$ then $f_{i,j}=0$. Further, let $idf_i$, inverse document frequency for $k_i$ ge given by:
\begin{equation}
idf_{i,j}=\log\frac{N}{n_{i}}
\end{equation}
The best known term weighting schemes use weights which are given by 
\begin{equation}
w_{i,j}=f_{i,j}\times\log\frac{N}{n_{i}}
\end{equation}
or by a variation of this formula. Such term-weighting strategies are called $tf$-$idf$ schemes.

One such term wights formula was given by Salton and Buckley as
\begin{equation}
w_{i,q}=\left(  0.5+\frac{0.5~freq_{i,q}}{\max_{l}\left(  freq_{l,q}\right)
}\right)  \times\log\frac{N}{n_{i}}%
\end{equation}
\end{definition}

unl/Csce810Chapter2 (last edited 2020-01-26 18:49:25 by scot)