Chapter 1 + Section 2.1 Introduction


attachment:InformationRetreivalProcess.jpg

Information Retrieval Process


Section 2.2 A taxonomy of Information Retrieval Models

Section 2.3 Retrieval: Ad hoc and Filtering

The following is the formal definition for IR from MIR p 23.

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
An information retrieval model is a quadruple $D,Q,F,R(q_i , d_j))$ where 
\begin{enumerate}
\item $D$ is a set composed of logical views (or representations) for the {\bf documents} in the collection.
\item $Q$ is a set composed of logical views (or representations) for the user information needs. Such representations are called {\bf queries}
\item $F$ is a {\bf framework} for modeling document representations, queries and their relationships.
\item $R(q_i,d_j)$ is a {\bf ranking function} wich associates a real number with a query $q_i \in Q$ and a document represenation $d_j \in D$. Such ranking defines an ordering among the documents with regard to the query $q_i$.
\end{enumerate}
\end{definition}

Section 2.5.1 Basic Concepts of Classic IR

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
Let $t$ be the number of index terms in the system and $k_i$ be a generic index term. $K={k_1,...,k_t}$ is the set of all index terms. A weight $w_{i,j} > 0$ is associated with each index term $k_i$ of  a document $d_j$. For an index term which does not appear in the document text, $w_{i,j}=0$. With document $d_j$ is associated an index term vector $\vec{d}_{j}=(w_{1,j},w_{2,j},...,w_{t,j})$. Further, let $g_{i}$ be a function that returns the wieght associated with the index term $k_{i}$ in any $t$-dimensional vector (i.e., $g_{i}(\vec{d}_{j})=w_{i,j}$).
\end{definition}

Section 2.5.2 Boolean Model

normal form as latex2($[\vec{q}_{dnf}=(1,1,1)\vee (1,1,0)\vee (1,0,0)]$).

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
For the Boolean model, the index term weight variables are all binary ie.e, $w_{i,j} \in {0,1}$. A query $q$ is a conventional boolean expression. Let $\vec{q}_{dnf}$ be the disjunctive normal form for the query $q$. further, let $\vec{q}_{cc}$ be any of the conjunctive components of $\vec{q}_{dnf}$. The similarity of a document $d_j$ to the query $q$ is defined as 
\begin{equation}
sim(d_{j},q)= \left\{
  \begin{array}{ll}
  1 & if~\exists \vec{q}_{cc}~|~(\vec{q}_{cc}\in \vec{q}_{dnf})\wedge (\forall k_{i},g_{i}(\vec{d}_{j})=g_{i}(\vec{q}_{cc}) \\
  0 & otherwise
  \end{array}
\right.
\end{equation}
If $sim(d_j,q)=1$ then the Boolean model predicts that the document $d_j$ is relevant to the query $q$ (it might not be). Otherwise, the prediction is that the document is not relevant.

\end{definition}

Section 2.5.3 Vector Model

\usepackage{amsmath}
\setcounter{MaxMatrixCols}{30}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
For the vector model, the weight $w_{i,j}$ associated with a pair
$(k_{i},j_{j})$ is positive and non-binary. Further, the index terms in the
query are also weighted. Let $w_{i,q}$ be the weight associated with the pair
$[k_{i},q]$, where $w_{i,q}\geq0$. Then, the query vector $\vec{q}$ is defined
as $\vec{q}=(w_{1,q},...,w_{t,q})$ where $t$ is the total number of index
terms in the system. As before, the vector for a document $d_{j}$ is
represented by $\vec{d}_{j}=(w_{1,j},...,w_{t,j})$.
\end{definition}

Thus we have a document $d_{j}$ and user query $q$ represented as
$t$-dimensional vectors. Similarity is defined cosine of the angle between the
document vector and the query vector as follows:

attachment:csce810_2_2.png

Figure 2

Having defined similarity the we now have a method for ranking and we can determine what is relevant by setting a threshold on the degree of similarity. This is essentially a clustering algorithm that clusters documents similar to the query in one set and documents dissimilar to the query in the other set. We say the IR problem can be reduced to a clustering problem determining what documents belong to the relevant set A and which do not. There are two main issues to resolved in a clustering problem:

  1. intra-cluster similarity --> term frequency (tf): One needs to determine what are the features which better describe the objects in set A.

  2. intra-cluster dissimilarity --> inverse document frequency (idf): One needs to determine what are the features which better distinguish the objects in set A from the remaining objects in collection C (the set of all documents).

\usepackage{amsmath}%
\setcounter{MaxMatrixCols}{30}%
\usepackage{amsfonts}%
\usepackage{amssymb}%
\usepackage{graphicx}
\usepackage{geometry}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}

%%end-prologue%%

\begin{definition}
Let $N$ be the total number of documents in the system and $n_i$ be the number of documents in which the index term $k_i$ appears. Let $freq_{i,j}$ be teh raw frequency of term $k_i$ in the document $d_j$ (i.e., the number of times the term $k_i$ is mentioned in the text of the document $d_j$). Then, the {\bf normalized} frequency $f_{i,j}$ of term $k_i$ in document $d_j$ is given by:
\begin{equation}
f_{i,j}=\frac{freq_{i,j}}{\max_{l}(freq_{l,j})}%
\end{equation}
where the maximum is computed over all terms which are mentioned in the text of the document $d_j$. If the term $k_i$ does not appear in the document $d_j$ then $f_{i,j}=0$. Further, let $idf_i$, inverse document frequency for $k_i$ ge given by:
\begin{equation}
idf_{i,j}=\log\frac{N}{n_{i}}
\end{equation}
The best known term weighting schemes use weights which are given by 
\begin{equation}
w_{i,j}=f_{i,j}\times\log\frac{N}{n_{i}}
\end{equation}
or by a variation of this formula. Such term-weighting strategies are called $tf$-$idf$ schemes.

One such term wights formula was given by Salton and Buckley as
\begin{equation}
w_{i,q}=\left(  0.5+\frac{0.5~freq_{i,q}}{\max_{l}\left(  freq_{l,q}\right)
}\right)  \times\log\frac{N}{n_{i}}%
\end{equation}
\end{definition}

Advantages

  1. Term-weighting scheme improves retrieval performance
  2. Partial matching allows retrieval of documents that approximate the query conditions
  3. The cosine ranking formula sorts the documents according th their degree of similarity

Disadvantages

  1. Does not account for term dependencies
  2. Answer sets are difficult to improve without query expansion or relevance feedback.